Schrödinger equations with analytic potentials

Éric Cancès, Gaspard Kemlin and Antoine Levitt CERMICS, École des Ponts ParisTech and Inria Paris, France eric.cances@enpc.fr • gaspard.kemlin@enpc.fr • antoine.levitt@inria.fr

Extreme-scale
Cathematically-ased
Col

Mathematically--
Computitional
Chenistry

Functional setting

We define the space \mathcal{H}_{A} of analytic functions for $A>0$ by

$$
\mathcal{H}_{A}:=\left\{\left.u \in \mathrm{~L}_{\#}^{2}(\mathbb{R}, \mathbb{C})\left|\sum_{k \in \mathbb{Z}}\right| \widehat{u}_{k}\right|^{2} w_{A}(k)<\infty\right\}
$$

equipped with the norm $\|u\|_{A}^{2}:=\sum_{k \in \mathbb{Z}}\left|\widehat{u}_{k}\right|^{2} w_{A}(k)$, where $w_{A}(k)=\cosh (2 A k)$ and the \widehat{u}_{k} 's are the Fourier coefficients of u. There is a direct isometry between \mathcal{H}_{A} and $\widetilde{\mathcal{H}}_{A}$ the space of functions that are analytic in a band of size A around the real axis in the complex plane:
$\widetilde{\mathcal{H}}_{A}:=\left\{\begin{array}{l|l}u \text { analytic on } \mathbb{R}+\mathrm{i}(-A, A) & \begin{array}{l}{[-A, A] \ni y \mapsto u(\cdot+\mathrm{iy}) \in \mathrm{L}_{\#}^{2}(\mathbb{R}, \mathbb{C}) \text { is continuous, }} \\ \|u\|_{\tilde{\mathcal{H}}_{A}}^{2}=\frac{1}{2} \int_{0}^{2 \pi}|u(x+i A)|^{2}+|u(x-i A)|^{2} \mathrm{~d} x<\infty\end{array}\end{array}\right\}$

Proposition

For $B>0$ and $V \in \mathcal{H}_{B}$, the multiplicative operator by V is bounded from \mathcal{H}_{A} to \mathcal{H}_{A} for any $0<A<B$, with $\|V\|_{\mathcal{L}\left(\mathcal{H}_{A}\right)} \rightarrow \infty$ when $A \rightarrow B$.

Question

To which \mathcal{H}_{A} the solutions of Schrödinger equations belong if the input data (potential, source terms, ...) are in some \mathcal{H}_{B} for a given B ?

Linear case

Theorem 1

Let $B>0$ and $V \in \mathcal{H}_{B}$ be such that $V \geqslant 1$. Then, $\forall 0<A<B$, if $f \in \mathcal{H}_{A}$, the unique solution u of $-\Delta u+V u=f$ in $H_{\#}^{2}(\mathbb{R}, \mathbb{C})$ also belongs to \mathcal{H}_{A}. Moreover, we have the following estimate

$$
\forall \varepsilon>0, \exists C_{\varepsilon}>0,\|u\|_{A} \leqslant \varepsilon\|f\|_{A}+C_{\varepsilon}\|f\|_{L_{\#}^{2}}
$$

Corollary: if V and f are entire, then so is u.

Sketch of proof: Let u be the unique solution to $-\Delta u+V u=f$ (which we know to belong to $\mathrm{H}_{\#}^{2}(\mathbb{R}, \mathbb{C})$ by classical results). For $N>0$, we decompose it into $u=u_{1}+u_{2}$ where $u_{1} \in X_{N}$ and $u_{2} \in X_{N}^{\perp}$, where $X_{N}:=\left\{u \in \mathrm{~L}_{\#}^{2}(\mathbb{R}, \mathbb{C})\left|\widehat{u}_{k}=0, \forall\right| k \mid>N\right\}$. Then,

- $u_{1} \in \mathcal{H}_{A}$ as it has finite Fourier support;
- $u_{2} \in \mathcal{H}_{A}$ for N large enough: the restriction of $-\Delta+V$ to X_{N}^{\perp} is invertible and its inverse is in $\mathcal{L}\left(\mathcal{H}_{A}\right)$ if N is large enough.
Put things together to get that $u=u_{1}+u_{2} \in \mathcal{H}_{A}$ for N large enough.
We can extend, in a similar way, this theorem to the linear eigenvalue problem.

Theorem 2

Let $B>0$ and $V \in \mathcal{H}_{B}$. Then, $\forall 0<A<B$, the solution $(u, \lambda) \in$ $\mathrm{H}_{\#}^{2}(\mathbb{R}, \mathbb{C}) \times \mathbb{R}$ of the eigenvalue problem,

$$
\left\{\begin{array}{l}
-\Delta u+V u=\lambda u, \tag{1}\\
\|u\|_{L_{\#}^{2}(\mathbb{R}, \mathbb{C})}=1,
\end{array}\right.
$$

is such that u also belongs to \mathcal{H}_{A}.
Corollary: if V is entire, then so is u.
Convergence of planewave approximations
Let $(u, \lambda) \in H_{\#}^{2}(\mathbb{R}, \mathbb{C}) \times \mathbb{R}$ be the solution to the linear eigenvalue problem (1) and (u_{N}, λ_{N}) be the variational approximation of (u, λ) in $X_{N} \times \mathbb{R}$. From [1], we know that if $V \in \mathrm{H}_{\#}^{s}(\mathbb{R}, \mathbb{C})$ with $s>1 / 2$, then there exists $C>0$, such that

$$
\forall N>0, \quad\left\|u-u_{N}\right\|_{H_{\#}^{1}} \leqslant C / N^{s+1} .
$$

Here, if $V \in \mathcal{H}_{B}$ for $B>0\left(\Rightarrow V \in \mathrm{H}_{\#}^{s}\right.$ for any $\left.s\right)$ and a consequence of Theorem 2 is that $\forall 0<A<B, u \in \mathcal{H}_{A}$ and there exists $C>0$, such that $C \rightarrow \infty$ when $A \rightarrow B$ and

$$
\forall N>0, \quad\left\|u-u_{N}\right\|_{H_{\#}^{1}} \leqslant C \exp (-A N) .
$$

Nonlinear case: a counter example

In the nonlinear case, such results are not true anymore and we propose the following counter example. Let $f:=\mu \sin$ for $\mu>0$ and u be the solution to the nonlinear Gross-Pitaevskii equation with source term, for some $\varepsilon \geqslant 0$:

$$
\begin{equation*}
-\varepsilon \Delta u_{\varepsilon}+u_{\varepsilon}+u_{\varepsilon}^{3}=f . \tag{2}
\end{equation*}
$$

$\varepsilon=0$: The real solution can be obtained with the the Cardan formula, with discriminant $R(x):=-\left(4+27 f(x)^{2}\right)<0$ for $x \in[0,2 \pi]$. However, its analytic continuation \widetilde{u}_{0} has a branching point for $z \in \mathbb{C}$ such that $R(z)=0$, i.e. $z= \pm i B$ where $f(i B)=\sqrt{4 / 27} \mathrm{i}: \widetilde{u}_{0}$ is not entire.
$\varepsilon>0$: We show that u is not in entire even if f is. Let $\psi_{\varepsilon}(y):=\operatorname{Im}\left(\widetilde{u}_{\varepsilon}(\right.$ iy $\left.)\right)$. It solves the ODE:

$$
\left\{\begin{array}{l}
\varepsilon \ddot{\psi}_{\varepsilon}+\psi_{\varepsilon}-\psi_{\varepsilon}^{3}=\mu \sinh , \tag{3}\\
\psi_{\varepsilon}(0)=0, \quad \dot{\psi}_{\varepsilon}(0)=u_{\varepsilon}^{\prime}(0)
\end{array}\right.
$$

As soon as ψ_{ε} reaches $1+\eta$ for some $\eta>0$ (which can be justified with combined numerical and convexity arguments), we can use comparison theorems for systems of ODE to prove that ψ_{ε} is bounded from below by the solution to the ODE

$$
\left\{\begin{array}{l}
\dot{\xi}_{\varepsilon, \eta}=\frac{1}{2 \sqrt{\varepsilon / 2}}\left(\xi_{\varepsilon, \eta}^{2}-1\right) \\
\xi_{\varepsilon, \eta}\left(y_{\eta}\right)=1+\eta
\end{array}\right.
$$

whose solution is defined only up to $Y_{\varepsilon, \eta}=\sqrt{\frac{\varepsilon}{2}} \log \left(1+\frac{2}{\eta}\right)+y_{\eta}$. As ψ_{ε} is bounded from below by $\xi_{\varepsilon, \eta}$, it is defined only up to $Y_{\varepsilon} \leqslant Y_{\varepsilon, \eta}$ and thus $\widetilde{u}_{\varepsilon}$ is not entire.

Figure 1: The analytic continuation of the solution to (2) is analytic only on a band of finite size around the real axis, even if f is analytic.

