Schrödinger equations with analytic potentials

Éric Cancès, Gaspard Kemlin and Antoine Levitt

CERMICS, École des Ponts ParisTech and Inria Paris, France

 $\texttt{eric.cances@enpc.fr} \ \cdot \ \texttt{gaspard.kemlin@enpc.fr} \ \cdot \ \texttt{antoine.levitt@inria.fr}$

be by the European Commission

Functional setting

We define the space \mathcal{H}_A of analytic functions for A > 0 by $\mathcal{H}_A \coloneqq \left\{ u \in \mathsf{L}^2_{\#}(\mathbb{R}, \mathbb{C}) \ \left| \sum_{k \in \mathbb{Z}} |\widehat{u}_k|^2 w_A(k) < \infty \right\},$ equipped with the norm $||u||_A^2 \coloneqq \sum_{k \in \mathbb{Z}} |\widehat{u}_k|^2 w_A(k)$, where $w_A(k) = \cosh(2Ak)$ and the \widehat{u}_k 's are the Fourier coefficients of u. There is a direct isometry between \mathcal{H}_A and $\widetilde{\mathcal{H}}_A$ the space of

Proposition

For B > 0 and $V \in \mathcal{H}_B$, the multiplicative operator by V is bounded from \mathcal{H}_A to \mathcal{H}_A for any 0 < A < B, with $\|V\|_{\mathcal{L}(\mathcal{H}_A)} \to \infty$ when $A \to B$.

Question

functions that are analytic in a band of size A around the real axis in the complex plane:

$$\widetilde{\mathcal{H}}_{A} \coloneqq \left\{ u \text{ analytic on } \mathbb{R} + i(-A, A) \middle| \begin{array}{l} [-A, A] \ni y \mapsto u(\cdot + iy) \in L^{2}_{\#}(\mathbb{R}, \mathbb{C}) \text{ is continuous,} \\ \|u\|^{2}_{\widetilde{\mathcal{H}}_{A}} = \frac{1}{2} \int_{0}^{2\pi} |u(x + iA)|^{2} + |u(x - iA)|^{2} dx < \infty \end{array} \right\}$$

To which \mathcal{H}_A the solutions of Schrödinger equations belong if the input data (potential, source terms, ...) are in some \mathcal{H}_B for a given *B*?

Linear case

Nonlinear case: a counter example

Theorem 1

Let B > 0 and $V \in \mathcal{H}_B$ be such that $V \ge 1$. Then, $\forall 0 < A < B$, if $f \in \mathcal{H}_A$, the unique solution u of $-\Delta u + Vu = f$ in $H^2_{\#}(\mathbb{R}, \mathbb{C})$ also belongs to \mathcal{H}_A . Moreover, we have the following estimate $\forall \varepsilon > 0, \exists C_{\varepsilon} > 0, \|u\|_A \le \varepsilon \|f\|_A + C_{\varepsilon} \|f\|_{L^2_{\#}}.$

Corollary: if V and f are entire, then so is u.

Sketch of proof: Let u be the unique solution to $-\Delta u + Vu = f$ (which we know to belong to $H^2_{\#}(\mathbb{R}, \mathbb{C})$ by classical results). For N > 0,

In the nonlinear case, such results are not true anymore and we propose the following counter example. Let $f := \mu \sin f$ for $\mu > 0$ and u be the solution to the nonlinear Gross-Pitaevskii equation with source term, for some $\varepsilon \ge 0$:

$$-\varepsilon\Delta u_{\varepsilon}+u_{\varepsilon}+u_{\varepsilon}^{3}=f. \qquad (2)$$

 $\underline{\varepsilon} = 0$: The real solution can be obtained with the the Cardan formula, with discriminant $R(x) := -(4 + 27f(x)^2) < 0$ for $x \in [0, 2\pi]$. However, its analytic continuation \widetilde{u}_0 has a branching point for $z \in \mathbb{C}$ such that R(z) = 0, *i.e.* $z = \pm iB$ where $f(iB) = \sqrt{4/27}i$: \widetilde{u}_0 is not entire.

 $\underline{\varepsilon} > 0$: We show that u is not in entire even if f is. Let $\psi_{\varepsilon}(y) := \operatorname{Im}(\widetilde{u}_{\varepsilon}(iy))$. It solves the ODE:

we decompose it into $u = u_1 + u_2$ where $u_1 \in X_N$ and $u_2 \in X_N^{\perp}$, where $X_N \coloneqq \{u \in L^2_{\#}(\mathbb{R}, \mathbb{C}) \mid \widehat{u}_k = 0, \forall |k| > N\}$. Then,

• $u_1 \in \mathcal{H}_A$ as it has finite Fourier support;

• $u_2 \in \mathcal{H}_A$ for N large enough: the restriction of $-\Delta + V$ to X_N^{\perp} is invertible and its inverse is in $\mathcal{L}(\mathcal{H}_A)$ if N is large enough.

Put things together to get that $u = u_1 + u_2 \in \mathcal{H}_A$ for N large enough. \Box

We can extend, in a similar way, this theorem to the linear eigenvalue problem.

Theorem 2

Let B > 0 and $V \in \mathcal{H}_B$. Then, $\forall 0 < A < B$, the solution $(u, \lambda) \in H^2_{\#}(\mathbb{R}, \mathbb{C}) \times \mathbb{R}$ of the eigenvalue problem,

$$iggl(-\Delta u + V u = \lambda u, \ \|u\|_{\mathrm{L}^2_{\#}(\mathbb{R},\mathbb{C})} = 1,$$

(1)

is such that u also belongs to \mathcal{H}_A . **Corollary:** if V is entire, then so is u.

Convergence of planewave approximations

 $\begin{cases} \varepsilon \ddot{\psi}_{\varepsilon} + \psi_{\varepsilon} - \psi_{\varepsilon}^{3} = \mu \sinh, \\ \psi_{\varepsilon}(0) = 0, \quad \dot{\psi}_{\varepsilon}(0) = u_{\varepsilon}'(0). \end{cases}$ (3)

As soon as ψ_{ε} reaches $1 + \eta$ for some $\eta > 0$ (which can be justified with combined numerical and convexity arguments), we can use comparison theorems for systems of ODE to prove that ψ_{ε} is bounded from below by the solution to the ODE

$$egin{aligned} &\dot{\xi}_{arepsilon,\eta} = rac{1}{2\sqrt{arepsilon/2}}(\xi_{arepsilon,\eta}^2-1), \ &\xi_{arepsilon,\eta}(y_\eta) = 1+\eta, \end{aligned}$$

whose solution is defined only up to $Y_{\varepsilon,\eta} = \sqrt{\frac{\varepsilon}{2}} \log \left(1 + \frac{2}{\eta}\right) + y_{\eta}$. As ψ_{ε} is bounded from below by $\xi_{\varepsilon,\eta}$, it is defined only up to $Y_{\varepsilon} \leq Y_{\varepsilon,\eta}$ and thus $\widetilde{u}_{\varepsilon}$ is not entire.

Let $(u, \lambda) \in H^2_{\#}(\mathbb{R}, \mathbb{C}) \times \mathbb{R}$ be the solution to the linear eigenvalue problem (1) and (u_N, λ_N) be the variational approximation of (u, λ) in $X_N \times \mathbb{R}$. From [1], we know that if $V \in H^s_{\#}(\mathbb{R}, \mathbb{C})$ with s > 1/2, then there exists C > 0, such that

 $\forall N > 0, \quad \|u - u_N\|_{\mathsf{H}^1_{\#}} \leq C/N^{s+1}.$

Here, if $V \in \mathcal{H}_B$ for B > 0 ($\Rightarrow V \in H^s_{\#}$ for any s) and a consequence of Theorem 2 is that $\forall 0 < A < B$, $u \in \mathcal{H}_A$ and there exists C > 0, such that $C \to \infty$ when $A \to B$ and

$$\forall N > 0, \quad \|u - u_N\|_{\mathsf{H}^1_{\#}} \leqslant C \exp\left(-AN\right).$$

[1] E. Cancès, R. Chakir, and Y. Maday.
Numerical Analysis of Nonlinear Eigenvalue Problems.
Journal of Scientific Computing, 45(1):90–117, 2010.

Figure 1: The analytic continuation of the solution to (2) is analytic only on a band of finite size around the real axis, even if f is analytic.