Calculation of response properties in DFT

Gaspard Kemlin

gaspard.kemlin@enpc.fr CERMICS, ENPC & Inria Paris, team MATHERIALS

PhD student with É. Cancès & A. Levitt, joint work with M. F. Herbst and B. Stamm

GAMM jahrestagung, Wednesday 17th 2022, Aachen

European Research Council Established by the European Commission

Numerical tests 00000000 Take-home messages and outlooks OO

1 DFT and response calculations

2 Computation of response

- Insulators and semi-conductors
- Metals

3 Numerical tests

4 Take-home messages and outlooks

Numerical tests

Take-home messages and outlooks OO

Why computing response to external perturbations ?

■ Kohn–Sham Density Functional Theory (KS-DFT) ~→ directly gives quantities of interest such as ground-state density and energy.

- However, many quantities of interest depends on the response of the system to external perturbations:
 - forces (response to atomic displacements) are easy thanks to the Hellmann-Feynman theorem;
 - in general, one needs to compute the response of the orbitals to external perturbations (phonons, polarisability, conductivity, ...);
 - machine learning applications require derivative w.r.t. model parameters.

Numerical tests

Take-home messages and outlooks OO

DFT and response calculations

The Kohn–Sham equations for a system with $N_{\rm el}=2N_{\rm p}$ electrons read

$$egin{aligned} & \mathcal{H}_{
ho}\phi_n = arepsilon_n\phi_n, \quad arepsilon_1 \leqslant arepsilon_2 \leqslant \cdots \ & \langle \phi_n, \phi_m
angle = \delta_{nm} \ & \ &
ho(m{r}) = \sum_{n=1}^{+\infty} f_n \, |\phi_n(m{r})|^2 \,, \quad \sum_{n=1}^{+\infty} f_n = N_{ ext{el}} \end{aligned}$$

where

- $H_{\rho} = -\frac{1}{2}\Delta + V + V_{H}(\rho) + V_{xc}(\rho)$ is the Kohn–Sham Hamiltonian;
- $f_n \in [0, 2]$ is the occupation number of the orbital ϕ_n :
 - for insulators and semi-conductors, $f_n = \begin{cases} 2 & \text{if } n \leq N_p, \\ 0 & \text{if } n > N_p; \end{cases}$

• for metals, one usually uses finite temperature T and $f_n = f\left(\frac{\varepsilon_n - \varepsilon_F}{T}\right)$, with f a fixed smearing

function (e.g. $f(x) = 2/(1 + e^x)$). ε_F is then defined such that $\sum f_n = N_{\rm el}$.

Assume that you have computed a solution to the Kohn–Sham equations. How does the density ρ changes if the Hamiltonian is perturbed by an external potential δV ?

¹S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi. Phonons and related crystal properties from density-functional perturbation theory. Reviews of Modern Physics, 73(2):515–562, 2001.

²M. F. Herbst and A. Levitt. Black-box inhomogeneous preconditioning for self-consistent field iterations in density functional theory. Journal of Physics: Condensed Matter, 33(8):085503, 2020.

³A. Levitt. Screening in the Finite-Temperature Reduced Hartree–Fock Model. Archive for Rational Mechanics and Analysis, 238(2):901–927, 2020.

Numerical tests 00000000 Take-home messages and outlooks

Assume that you have computed a solution to the Kohn–Sham equations. How does the density ρ changes if the Hamiltonian is perturbed by an external potential δV ?

In this framework, the response to an external perturbation δV can be computed¹²³ via

$$\delta\rho(\boldsymbol{r}) = \sum_{n=1}^{+\infty} \sum_{m=1}^{+\infty} \frac{f_n - f_m}{\varepsilon_n - \varepsilon_m} \phi_n^*(\boldsymbol{r}) \phi_m(\boldsymbol{r}) \left(\delta V_{mn} - \delta\varepsilon_F \delta_{mn}\right),$$

where $A_{mn} = \langle \phi_m, A \phi_n \rangle$. We use the convention

$$\frac{f_n-f_n}{\varepsilon_n-\varepsilon_n}=\frac{1}{T}f'\left(\frac{\varepsilon_n-\varepsilon_F}{T}\right)=:f'_n.$$

Gaspard Kemlin CERMICS & Inria

¹S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi. Phonons and related crystal properties from density-functional perturbation theory. Reviews of Modern Physics, 73(2):515–562, 2001.

²M. F. Herbst and A. Levitt. Black-box inhomogeneous preconditioning for self-consistent field iterations in density functional theory. Journal of Physics: Condensed Matter, 33(8):085503, 2020.

³A. Levitt. Screening in the Finite-Temperature Reduced Hartree–Fock Model. Archive for Rational Mechanics and Analysis, 238(2):901–927, 2020.

Numerical tests 00000000 Take-home messages and outlooks OO

Insulators and semi-conductors

For insulators and semi-conductors, things are easy:

$$\delta\rho(\boldsymbol{r}) = 2\sum_{n=1}^{N_{\rm p}}\sum_{m=N_{\rm p}+1}^{+\infty}\frac{2}{\varepsilon_n-\varepsilon_m}\phi_n^*(\boldsymbol{r})\phi_m(\boldsymbol{r})\delta V_{mn} = 2\sum_{n=1}^{N_{\rm p}}\phi_n(\boldsymbol{r})^*\delta\phi_n(\boldsymbol{r}),$$

where $\delta \phi_n(\mathbf{r})$ can be computed from the Sternheimer equation⁴

⁴R. M. Sternheimer. Electronic Polarizabilities of lons from the Hartree-Fock Wave Functions. Physical Review, 96(4):951–968, 1954.

Gaspard Kemlin CERMICS & Inria

FT and response calculations OO	Computation of response	Numerical tests 00000000	Take-home messages and outlooks OO

The real fun happens with metals:

u first, select N orbitals that have an occupation number f_n above some numerical threshold;

FT and response calculations	Computation of response ○●○○○○	Numerical tests 00000000	Take-home messages and outlooks OO

The real fun happens with metals:

- first, select N orbitals that have an occupation number f_n above some numerical threshold;
- introduce free parameters $\alpha_{mn} \in [0, 1]$ such that $\alpha_{mn} + \alpha_{nm} = 1$. Using symmetry between *n* and *m*, we obtain

$$\delta\rho(\mathbf{r}) = 2\sum_{n=1}^{N}\sum_{m=1}^{+\infty}\frac{f_n - f_m}{\varepsilon_n - \varepsilon_m}\alpha_{mn}\phi_n^*(\mathbf{r})\phi_m(\mathbf{r})\left(\delta V_{mn} - \delta\varepsilon_F\delta_{mn}\right) = 2\sum_{n=1}^{N}\phi_n^*(\mathbf{r})\delta\phi_n(\mathbf{r});$$

FT and response calculations	Computation of response	Numerical tests	Take-home messages and outlooks
	○●○○○○	00000000	OO

The real fun happens with metals:

- first, select N orbitals that have an occupation number f_n above some numerical threshold;
- introduce free parameters $\alpha_{mn} \in [0, 1]$ such that $\alpha_{mn} + \alpha_{nm} = 1$. Using symmetry between *n* and *m*, we obtain

$$\delta\rho(\mathbf{r}) = 2\sum_{n=1}^{N}\sum_{m=1}^{+\infty}\frac{f_n - f_m}{\varepsilon_n - \varepsilon_m}\alpha_{mn}\phi_n^*(\mathbf{r})\phi_m(\mathbf{r})\left(\delta V_{mn} - \delta\varepsilon_F\delta_{mn}\right) = 2\sum_{n=1}^{N}\phi_n^*(\mathbf{r})\delta\phi_n(\mathbf{r});$$

• conservation of charge directly gives $\int \delta \rho(\mathbf{r}) d\mathbf{r} = \mathbf{0} \Rightarrow \delta \varepsilon_F = \left(\sum_{n=1}^N f'_n \delta V_{nn}\right) / \left(\sum_{n=1}^N f'_n\right);$

FT and response calculations	Computation of response	Numerical tests	Take-home messages and outlooks
OO		00000000	OO

The real fun happens with metals:

- first, select N orbitals that have an occupation number f_n above some numerical threshold;
- introduce free parameters $\alpha_{mn} \in [0, 1]$ such that $\alpha_{mn} + \alpha_{nm} = 1$. Using symmetry between *n* and *m*, we obtain

$$\delta\rho(\mathbf{r}) = 2\sum_{n=1}^{N}\sum_{m=1}^{+\infty}\frac{f_n - f_m}{\varepsilon_n - \varepsilon_m}\alpha_{mn}\phi_n^*(\mathbf{r})\phi_m(\mathbf{r})\left(\delta V_{mn} - \delta\varepsilon_F\delta_{mn}\right) = 2\sum_{n=1}^{N}\phi_n^*(\mathbf{r})\delta\phi_n(\mathbf{r});$$

- conservation of charge directly gives $\int \delta \rho(\mathbf{r}) d\mathbf{r} = \mathbf{0} \Rightarrow \delta \varepsilon_F = \left(\sum_{n=1}^N f'_n \delta V_{nn}\right) / \left(\sum_{n=1}^N f'_n\right);$
- for $n \leq N$, split $\delta \phi_n$ into two contributions: $\delta \phi_n = \delta \phi_n^P + \delta \phi_n^Q$ where • $\delta \phi_n^P = \sum_{m=1}^N \langle \phi_m, \delta \phi_n \rangle \phi_m \in \text{Span}(\phi_m)_{1 \leq m \leq N}$ can be explicitly computed; • $\delta \phi_n^Q = \sum_{m=N+1}^{+\infty} \langle \phi_m, \delta \phi_n \rangle \phi_m \in \text{Span}(\phi_m)_{N+1 \leq m}$ can be obtained through the Sternheimer equation.

DFT and response calculations 000

Computation of response

Numerical tests 00000000 Take-home messages and outlooks OO

 $\delta \phi_n^P = \sum_{m=1}^N \langle \phi_m, \delta \phi_n \rangle \phi_m$ can be obtained by computing all the contributions

$$\langle \phi_m, \delta \phi_n \rangle = \frac{f_n - f_m}{\varepsilon_n - \varepsilon_m} \alpha_{mn} \left(\delta V_{mn} - \delta \varepsilon_F \delta_{mn} \right).$$

Different possibilities for α_{mn} exist (because the Sternheimer equation is ill-posed in Span $(\phi_m)_{1 \leq m \leq N}$):

- $\alpha_{mn} = 1/2$ is the simplest possibility;
- $\alpha_{mn} = f_n^2/(f_n^2 + f_m^2)$ makes $\delta \phi_n$ small if f_n is small (implemented for instance in DFTK);
- $\alpha_{mn} = f\left(\frac{\varepsilon_n \varepsilon_m}{T}\right)$ where $f(x) = 1/(1 + e^x)$ (implemented in Quantum Espresso);
- $\alpha_{mn} = \mathbf{1}_{f_n > f_m}$ and $\alpha_{nn} = 1/2$ (implemented in Abinit);

• whatever you like as long as $\alpha_{mn} + \alpha_{nm} = 1$.

DFT and response calculations 000

Computation of response

Numerical tests 00000000 Take-home messages and outlooks

 $\delta \phi_n^P = \sum_{m=1}^N \langle \phi_m, \delta \phi_n \rangle \phi_m$ can be obtained by computing all the contributions

$$\langle \phi_m, \delta \phi_n \rangle = \frac{f_n - f_m}{\varepsilon_n - \varepsilon_m} \alpha_{mn} \left(\delta V_{mn} - \delta \varepsilon_F \delta_{mn} \right).$$

Different possibilities for α_{mn} exist (because the Sternheimer equation is ill-posed in Span $(\phi_m)_{1 \leq m \leq N}$):

This is nice because it brings numerical stability:

$$|\langle \phi_m, \delta \phi_n \rangle| \leq \max_{x \in \mathbb{R}} \frac{1}{T} |f'(x)| |\delta V_{mn} - \delta \varepsilon_F \delta_{mn}|,$$

so that an error on δV is amplified at most by $\max_{x \in \mathbb{R}} \frac{1}{T} |f'(x)|$.

Numerical tests 00000000 Take-home messages and outlooks

 $\delta \phi_n^Q = \sum_{m=N+1}^{+\infty} \langle \phi_m, \delta \phi_n \rangle \phi_m$ cannot be computed in a similar way as we do not know all the ϕ_m for $m \ge N+1$. However, as for insulators, it solves the Sternheimer equation:

 $Q(H_{\rho}-\varepsilon_n)Q\delta\phi_n=-f_nQ\delta V\phi_n,$

where $Q=1-\sum_{m=1}^{N}\ket{\phi_m}ra{\phi_m}.$

⁵S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi. Phonons and related crystal properties from density-functional perturbation theory. Reviews of Modern Physics, 73(2):515–562, 2001.

Numerical tests 00000000

 $\delta \phi_n^Q = \sum_{m=N+1}^{+\infty} \langle \phi_m, \delta \phi_n \rangle \phi_m$ cannot be computed in a similar way as we do not know all the ϕ_m for $m \ge N+1$. However, as for insulators, it solves the Sternheimer equation:

 $Q(H_{\rho}-\varepsilon_n)Q\delta\phi_n=-f_nQ\delta V\phi_n,$

where $Q=1-\sum_{m=1}^{N} \ket{\phi_m}ra{\phi_m}.$

 \sim This can be solved with iterative solvers, but it is possibly very ill-conditioned as, for metals, $\varepsilon_{N+1} - \varepsilon_N > 0$ can be very small. Solutions to this exists in the literature (e.g. appropriate shift of the Hamiltonian⁵), and we suggest a new one, based on the inversion of a (better conditioned) Schur complement.

⁵S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi. Phonons and related crystal properties from density-functional perturbation theory. Reviews of Modern Physics, 73(2):515–562, 2001.

We actually have some information about additional orbitals $\widetilde{\Phi} = (\widetilde{\phi}_m)_{N+1 \leq m \leq N+N_{ex}}$:

- some of them have been discarded from the response calculations because f_n is too small, these are exact (up to numerical tolerance) eigenvectors;
- others have been used to enhance the convergence of the SCF algorithm, but they have not been fully converged by the eigensolver.

We actually have some information about additional orbitals $\widetilde{\Phi} = (\widetilde{\phi}_m)_{N+1 \leq m \leq N+N_{ex}}$:

- some of them have been discarded from the response calculations because f_n is too small, these are exact (up to numerical tolerance) eigenvectors;
- others have been used to enhance the convergence of the SCF algorithm, but they have not been fully converged by the eigensolver.

In particular, we can assume that $\langle \widetilde{\Phi}, H_{\rho} \widetilde{\Phi} \rangle$ is a diagonal matrix. We can thus write H_{ρ} into the decomposition

$$\operatorname{Ran}(P) \oplus \operatorname{Ran}(T) \oplus \operatorname{Ran}(R) \quad \text{with} \quad P = \sum_{m=1}^{N} |\phi_m\rangle \langle \phi_m|, \ T = \sum_{m=N+1}^{N+N_{ex}} |\widetilde{\phi}_m\rangle \langle \widetilde{\phi}_m|, \ R = 1 - P - T.$$
as
$$H_{\rho} = \begin{pmatrix} E & 0 & 0 \\ 0 & E_{ex} & TH_{\rho}R \\ 0 & RH_{\rho}T & RH_{\rho}R \end{pmatrix}$$

where

$$E = \mathsf{Diag}(\varepsilon_1, \dots, \varepsilon_N), \quad E_{\mathsf{ex}} = \langle \widetilde{\Phi}, H_\rho \widetilde{\Phi} \rangle, \quad RH_\rho T = 0 \text{ if } \widetilde{\Phi} \text{ is exclusively exact eigenvectors.}$$

$$\operatorname{Ran}(P) \oplus \operatorname{Ran}(Q) \qquad \operatorname{Ran}(P) \oplus \operatorname{Ran}(R)$$

$$H_{\rho} - \varepsilon_{n} = \begin{pmatrix} E - \varepsilon_{n} & 0 \\ 0 & Q(H_{\rho} - \varepsilon_{n})Q \end{pmatrix} \qquad H_{\rho} - \varepsilon_{n} = \begin{pmatrix} E - \varepsilon_{n} & 0 & 0 \\ 0 & E_{ex} - \varepsilon_{n} & T(H_{\rho} - \varepsilon_{n})R \\ 0 & R(H_{\rho} - \varepsilon_{n})T & R(H_{\rho} - \varepsilon_{n})R \end{pmatrix}$$
invert $Q(H_{\rho} - \varepsilon_{n})Q$
invert $E_{ex} - \varepsilon_{n}$ for free (diagonal)
invert $R(H_{\rho} - \varepsilon_{n})R$
possibly ill-conditioned for $n = N$
if $\varepsilon_{N+1} - \varepsilon_{N}$ is too small
$$\downarrow$$

better conditioned for n = N as $\varepsilon_{N+N_{\mathrm{ex}}+1} - \varepsilon_N > \varepsilon_{N+1} - \varepsilon_N$

plug things together via a Schur complement to get $\delta \phi_n^Q$

DFT and response calculations 000

Computation of response

Numerical tests

Take-home messages and outlooks OO

Density-functional toolkit⁶ - https://dftk.org

- Julia code for plane-wave DFT
- Fully composable with Julia ecosystem:
 - Arbitrary precision
 - Automatic Differentiation
 - Numerical error control

Both suitable for mathematical developments and relevant applications

- 1D problems, toy models for rigorous analysis
- DFT up to 1,000 electrons
- \blacksquare 3 years of development (M.F. Herbst and A. Levitt) and \sim 7k lines of code

Gaspard Kemlin CERMICS & Inria

⁶ M. F. Herbst, A. Levitt, and E. Cancès. DFTK: A Julian approach for simulating electrons in solids. Proceedings of the JuliaCon Conferences, 3(26):69, 2021.

DFT	response	
000		

Numerical tests

Take-home messages and outlooks OO

Aluminium

Al₄₀: elongated aluminium supercell with 40 atoms and we use

- PBE exchange-correlation functional;
- Fermi-Dirac smearing with $T = 10^{-3}$ hartree;
- **3** \times 3 \times 1 discretization of the Brillouin zone;
- $E_{\rm cut} = 45$ hartree;
- $N_p = 60$ electron pairs \rightsquigarrow standard heuristics give 72 bands + 3 nonconverged bands for every *k*-point for calculations, occupation threshold is 10^{-8} .

 \rightsquigarrow we compute $\delta \phi_n^P$ with $\alpha_{mn} = f_n^2/(f_n^2 + f_m^2)$, then solve the Sternheimer equation for $\delta \phi_n^Q$ with and without the Schur complement, for every Bloch fiber of the periodic KS Hamiltonian associated to each *k*-point.

DFT and response calculations	Computation of response	Numerical tests	Take-home messages and outlooks
000		00●00000	OO

k-	point	1		2		5	
	N		69	58		67	
	N _{ex}		6		17		8
ε_{N-1}	f_{N-1}	0.359	$1.03\cdot 10^{-5}$	0.359	$7.77\cdot 10^{-6}$	0.344	1.85
ε_N	f_N	0.359	$1.02\cdot 10^{-5}$	0.360	$5.23\cdot 10^{-6}$	0.344	1.84
ε_{N+1}	f_{N+1}	0.391	$1.25\cdot10^{-19}$	0.373	$8.01\cdot10^{-12}$	0.366	$9.16\cdot 10^{-9}$
ε_{N+}	$\varepsilon_1 - \varepsilon_N$		0.0320		0.0134	0	.0217
#iterations	s n = N Schur		42		41		37
#iterations	n = N no Schur		49		74		53

Table: Sternheimer convergence data for 3 particular k-points for Al₄₀.

Figure: Sternheimer convergence data for all eigenvalues of one particular k-point for AI_{40} .

 \sim global computational time (all *k*-points included) is reduced from 8,090 applications of the Hamiltonian without the Schur complement to 6,960 (15% gain).

DFT	response	
000		

Numerical tests

Take-home messages and outlooks OO

Heusler compounds

Fe_2MnAl: halfmetallic behavior, spin $\uparrow \sim$ metal and spin $\downarrow \sim$ insulator

- PBE exchange-correlation functional;
- Gaussian smearing with $T = 10^{-2}$ hartree;
- \blacksquare 13 \times 13 \times 13 discretization of the Brillouin zone;
- $E_{\rm cut} = 45$ hartree;
- $f_n \in [0, 1]$ here, but we double the number of k-point (one for each spin);
- $N_p = 25$ electron pairs \rightsquigarrow standard heuristics give 35 bands + 3 nonconverged bands for every *k*-point for calculations, occupation threshold is 10^{-8}

 \rightsquigarrow we compute $\delta \phi_n^P$ with $\alpha_{mn} = f_n^2/(f_n^2 + f_m^2)$, then solve the Sternheimer equation for $\delta \phi_n^Q$ with and without the Schur complement, for every Bloch fiber of the periodic KS Hamiltonian associated to each *k*-point.

spin channel		\uparrow		\downarrow	
N		28		26	
	$N_{ m ex}$		10		12
ε_{N-2}	f_{N-2}	0.447	0.877	0.438	0.992
ε_{N-1}	f_{N-1}	0.469	0.0213	0.480	0.00016
ε_N	f_N	0.473	0.00608	0.491	$1.72\cdot 10^{-7}$
ε_{N+1}	f_{N+1}	0.515	$1.06\cdot10^{-17}$	0.506	$1.8\cdot10^{-13}$
$\varepsilon_{N+1} - \varepsilon_N$		0.0423		0.0154	
#iterations $n = N$ Schur		47		47	
#iterations $n = N$ no Schur		87		104	

Table: Sternheimer convergence data for both spin channel of one particular k-points for Fe₂MnAI.

Figure: Sternheimer convergence data for all eigenvalues of both spin channels of one particular k-point for Fe₂MnAI.

Figure: Sternheimer convergence data for all eigenvalues of both spin channels of all k-points for Fe₂MnAI.

→ global computational time (all *k*-points included) is reduced from 83.7×10^3 applications of the Hamiltonian without the Schur complement to 56.1×10^3 (33% gain).

Take-home messages and outlooks

Take-home messages:

- insulators are easy: $\delta \phi_n \in \text{Span}(\phi_m)_{N+1 \leq m}$ and the Sternheimer equation is usually well-conditioned;
- metals are more difficult: $\delta \phi_n = \delta \phi_n^P + \delta \phi_n^Q$
 - $\delta \phi_n^P$ solves the ill-posed Sternheimer equation in Span $(\phi_m)_{1 \le m \le N}$ and we derived a common framework from the literature which ensures numerical stability (computational time is negligible);
 - $\delta \phi_n^Q$ solves the ill-conditioned Sternheimer equation in Span $(\phi_m)_{N+1 \leq m}$ and we enhanced its resolution through a Schur complement. Numerical experiments give satisfying results.

Outlooks:

- how to choose N_{ex} ? \rightsquigarrow estimate the conditioning of the Schur complement to reach a given enhancement of the convergence, but still requires a first SCF calculation.
- how to adapt on the fly (i.e. during SCF) the number of extra bands ?
- implemented by default in DFTK, which allows for efficient Automatic Differentiation implementations.

Thanks for your attention !

Joint work with

Éric Cancès

Michael F. Herbst

Antoine Levitt

Benjamin Stamm

