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Why computing response to external perturbations ?

Kohn–Sham Density Functional Theory (KS-DFT) ⇝ directly gives quantities of interest such as
ground-state density and energy.

However, many quantities of interest depends on the response of the system to external
perturbations:

forces (response to atomic displacements) are easy thanks to the Hellmann-Feynman theorem;
in general, one needs to compute the response of the orbitals to external perturbations (phonons,
polarisability, conductivity, . . . );
machine learning applications require derivative w.r.t. model parameters.
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DFT and response calculations

The Kohn–Sham equations for a system with Nel = 2Np electrons read

Hρϕn = εnϕn, ε1 ⩽ ε2 ⩽ · · ·
⟨ϕn, ϕm⟩ = δnm

ρ(r) =
+∞∑
n=1

fn |ϕn(r)|2 ,

+∞∑
n=1

fn = Nel

where
Hρ = − 1

2 ∆ + V + VH(ρ) + Vxc(ρ) is the Kohn–Sham Hamiltonian;
fn ∈ [0, 2] is the occupation number of the orbital ϕn:

for insulators and semi-conductors, fn =
{

2 if n ⩽ Np,

0 if n > Np;

for metals, one usually uses finite temperature T and fn = f
(

εn − εF
T

)
, with f a fixed smearing

function (e.g. f (x) = 2/(1 + ex )). εF is then defined such that
+∞∑
n=1

fn = Nel.
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Assume that you have computed a solution to the Kohn–Sham equations. How does the density ρ
changes if the Hamiltonian is perturbed by an external potential δV ?

In this framework, the response to an external perturbation δV can be computed123 via

δρ(r) =
+∞∑
n=1

+∞∑
m=1

fn − fm

εn − εm
ϕ∗

n(r)ϕm(r) (δVmn − δεF δmn) ,

where Amn = ⟨ϕm, Aϕn⟩. We use the convention

fn − fn

εn − εn
= 1

T f ′
(

εn − εF

T

)
=: f ′

n .

1S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi. Phonons and related crystal properties from density-functional
perturbation theory. Reviews of Modern Physics, 73(2):515–562, 2001.

2M. F. Herbst and A. Levitt. Black-box inhomogeneous preconditioning for self-consistent field iterations in density
functional theory. Journal of Physics: Condensed Matter, 33(8):085503, 2020.

3A. Levitt. Screening in the Finite-Temperature Reduced Hartree–Fock Model. Archive for Rational Mechanics and Analysis,
238(2):901–927, 2020.
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Insulators and semi-conductors

For insulators and semi-conductors, things are easy:

δρ(r) = 2
Np∑

n=1

+∞∑
m=Np+1

2
εn − εm

ϕ∗
n(r)ϕm(r)δVmn = 2

Np∑
n=1

ϕn(r)∗δϕn(r),

where δϕn(r) can be computed from the Sternheimer equation4

Q(Hρ − εn)Qδϕn = −2QδV ϕn,

where Q = 1 − P and P =
Np∑

m=1

|ϕm⟩ ⟨ϕm|.

×× ×××
1

×
Np

P

×
Np + 1

Q

×× ×

4R. M. Sternheimer. Electronic Polarizabilities of Ions from the Hartree-Fock Wave Functions. Physical Review,
96(4):951–968, 1954.
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Metals

The real fun happens with metals:
first, select N orbitals that have an occupation number fn above some numerical threshold;

×× ×××
1

×+
εF

× ××× × ×
N

× × ×× ×
f
(

ε−εF
T

)

introduce free parameters αmn ∈ [0, 1] such that αmn + αnm = 1. Using symmetry between n and
m, we obtain

δρ(r) = 2
N∑

n=1

+∞∑
m=1

fn − fm

εn − εm
αmnϕ∗

n(r)ϕm(r) (δVmn − δεF δmn) = 2
N∑

n=1

ϕ∗
n(r)δϕn(r);

conservation of charge directly gives
∫

δρ(r)dr = 0 ⇒ δεF =
(∑N

n=1 f ′
n δVnn

)
/
(∑N

n=1 f ′
n

)
;

for n ⩽ N, split δϕn into two contributions: δϕn = δϕP
n + δϕQ

n where

δϕP
n =

N∑
m=1

⟨ϕm, δϕn⟩ ϕm ∈ Span(ϕm)1⩽m⩽N can be explicitly computed;

δϕQ
n =

+∞∑
m=N+1

⟨ϕm, δϕn⟩ ϕm ∈ Span(ϕm)N+1⩽m can be obtained through the Sternheimer equation.
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δϕP
n =

N∑
m=1

⟨ϕm, δϕn⟩ ϕm can be obtained by computing all the contributions

⟨ϕm, δϕn⟩ = fn − fm

εn − εm
αmn (δVmn − δεF δmn) .

Different possibilities for αmn exist (because the Sternheimer equation is ill-posed in Span(ϕm)1⩽m⩽N):
αmn = 1/2 is the simplest possibility;
αmn = f 2

n /(f 2
n + f 2

m) makes δϕn small if fn is small (implemented for instance in DFTK);
αmn = f

(
εn−εm

T

)
where f (x) = 1/(1 + ex ) (implemented in Quantum Espresso);

αmn = 1fn>fm and αnn = 1/2 (implemented in Abinit);
whatever you like as long as αmn + αnm = 1.

This is nice because it brings numerical stability:

|⟨ϕm, δϕn⟩| ⩽ max
x∈R

1
T
∣∣f ′(x)

∣∣ |δVmn − δεF δmn| ,

so that an error on δV is amplified at most by maxx∈R
1
T |f ′(x)|.

Gaspard Kemlin CERMICS & Inria Calculation of response properties in DFT GAMM 2022 8 / 20



DFT and response calculations Computation of response Numerical tests Take-home messages and outlooks

δϕP
n =

N∑
m=1

⟨ϕm, δϕn⟩ ϕm can be obtained by computing all the contributions

⟨ϕm, δϕn⟩ = fn − fm

εn − εm
αmn (δVmn − δεF δmn) .

Different possibilities for αmn exist (because the Sternheimer equation is ill-posed in Span(ϕm)1⩽m⩽N):
αmn = 1/2 is the simplest possibility;
αmn = f 2

n /(f 2
n + f 2

m) makes δϕn small if fn is small (implemented for instance in DFTK);
αmn = f

(
εn−εm

T

)
where f (x) = 1/(1 + ex ) (implemented in Quantum Espresso);

αmn = 1fn>fm and αnn = 1/2 (implemented in Abinit);
whatever you like as long as αmn + αnm = 1.

This is nice because it brings numerical stability:

|⟨ϕm, δϕn⟩| ⩽ max
x∈R

1
T
∣∣f ′(x)

∣∣ |δVmn − δεF δmn| ,

so that an error on δV is amplified at most by maxx∈R
1
T |f ′(x)|.

Gaspard Kemlin CERMICS & Inria Calculation of response properties in DFT GAMM 2022 8 / 20



DFT and response calculations Computation of response Numerical tests Take-home messages and outlooks

δϕQ
n =

+∞∑
m=N+1

⟨ϕm, δϕn⟩ ϕm cannot be computed in a similar way as we do not know all the ϕm for

m ⩾ N + 1. However, as for insulators, it solves the Sternheimer equation:

Q(Hρ − εn)Qδϕn = −fnQδV ϕn,

where Q = 1 −
N∑

m=1

|ϕm⟩ ⟨ϕm|.

⇝ This can be solved with iterative solvers, but it is possibly very ill-conditioned as, for metals,
εN+1 − εN > 0 can be very small. Solutions to this exists in the literature (e.g. appropriate shift of the
Hamiltonian5), and we suggest a new one, based on the inversion of a (better conditioned) Schur
complement.

5S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi. Phonons and related crystal properties from density-functional
perturbation theory. Reviews of Modern Physics, 73(2):515–562, 2001.
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We actually have some information about additional orbitals Φ̃ = (ϕ̃m)N+1⩽m⩽N+Nex :
some of them have been discarded from the response calculations because fn is too small, these
are exact (up to numerical tolerance) eigenvectors;
others have been used to enhance the convergence of the SCF algorithm, but they have not been
fully converged by the eigensolver.

In particular, we can assume that ⟨Φ̃, HρΦ̃⟩ is a diagonal matrix. We can thus write Hρ into the
decomposition

Ran(P) ⊕ Ran(T ) ⊕ Ran(R) with P =
N∑

m=1

|ϕm⟩ ⟨ϕm| , T =
N+Nex∑

m=N+1

|ϕ̃m⟩⟨ϕ̃m|, R = 1 − P − T .

as

Hρ =

(E 0 0
0 Eex THρR
0 RHρT RHρR

)
where

E = Diag(ε1, . . . , εN), Eex = ⟨Φ̃, HρΦ̃⟩, RHρT = 0 if Φ̃ is exclusively exact eigenvectors.
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×× ×××
1

×
N

P

×
N + 1

T R

× ××× ×

Q

×
N + Nex

×× ×

Ran(P) ⊕ Ran(Q)

Hρ−εn =
(

E − εn 0
0 Q(Hρ − εn)Q

)
invert Q(Hρ − εn)Q

↓

possibly ill-conditioned for n = N
if εN+1 − εN is too small

Ran(P) ⊕ Ran(T ) ⊕ Ran(R)

Hρ − εn =

(E − εn 0 0
0 Eex − εn T (Hρ − εn)R
0 R(Hρ − εn)T R(Hρ − εn)R

)

invert Eex − εn for free (diagonal)

invert R(Hρ − εn)R

↓

better conditioned for n = N as εN+Nex+1 − εN > εN+1 − εN

plug things together via a Schur complement to get δϕQ
n
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Density-functional toolkit6 – https://dftk.org

Julia code for plane-wave DFT
Fully composable with Julia ecosystem:

Arbitrary precision
Automatic Differentiation
Numerical error control

Both suitable for mathematical developments and relevant applications
1D problems, toy models for rigorous analysis
DFT up to 1, 000 electrons

3 years of development (M.F. Herbst and A. Levitt) and ∼ 7k lines of code

6 M. F. Herbst, A. Levitt, and E. Cancès. DFTK: A Julian approach for simulating electrons in solids. Proceedings of the
JuliaCon Conferences, 3(26):69, 2021.
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Aluminium

Al40: elongated aluminium supercell with 40 atoms and we use
PBE exchange-correlation functional;
Fermi-Dirac smearing with T = 10−3 hartree;
3 × 3 × 1 discretization of the Brillouin zone;
Ecut = 45 hartree;
Np = 60 electron pairs ⇝ standard heuristics give 72 bands + 3 nonconverged bands for every
k-point for calculations, occupation threshold is 10−8.

⇝ we compute δϕP
n with αmn = f 2

n /(f 2
n + f 2

m), then solve the Sternheimer equation for δϕQ
n with and

without the Schur complement, for every Bloch fiber of the periodic KS Hamiltonian associated to
each k-point.
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k-point 1 2 5
N 69 58 67

Nex 6 17 8
εN−1 fN−1 0.359 1.03 · 10−5 0.359 7.77 · 10−6 0.344 1.85
εN fN 0.359 1.02 · 10−5 0.360 5.23 · 10−6 0.344 1.84

εN+1 fN+1 0.391 1.25 · 10−19 0.373 8.01 · 10−12 0.366 9.16 · 10−9

εN+1 − εN 0.0320 0.0134 0.0217
#iterations n = N Schur 42 41 37

#iterations n = N no Schur 49 74 53

Table: Sternheimer convergence data for 3 particular k-points for Al40.
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Figure: Sternheimer convergence data for all eigenvalues of one particular k-point for Al40.

⇝ global computational time (all k-points included) is reduced from 8, 090 applications of the
Hamiltonian without the Schur complement to 6, 960 (15% gain).
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Heusler compounds

Fe2MnAl: halfmetallic behavior, spin ↑ ∼ metal and spin ↓ ∼ insulator
PBE exchange-correlation functional;
Gaussian smearing with T = 10−2 hartree;
13 × 13 × 13 discretization of the Brillouin zone;
Ecut = 45 hartree;
fn ∈ [0, 1] here, but we double the number of k-point (one for each spin);
Np = 25 electron pairs ⇝ standard heuristics give 35 bands + 3 nonconverged bands for every
k-point for calculations, occupation threshold is 10−8

⇝ we compute δϕP
n with αmn = f 2

n /(f 2
n + f 2

m), then solve the Sternheimer equation for δϕQ
n with and

without the Schur complement, for every Bloch fiber of the periodic KS Hamiltonian associated to
each k-point.
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spin channel ↑ ↓

N 28 26
Nex 10 12

εN−2 fN−2 0.447 0.877 0.438 0.992
εN−1 fN−1 0.469 0.0213 0.480 0.00016
εN fN 0.473 0.00608 0.491 1.72 · 10−7

εN+1 fN+1 0.515 1.06 · 10−17 0.506 1.8 · 10−13

εN+1 − εN 0.0423 0.0154
#iterations n = N Schur 47 47

#iterations n = N no Schur 87 104

Table: Sternheimer convergence data for both spin channel of one particular k-points for Fe2MnAl.
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Figure: Sternheimer convergence data for all eigenvalues of both spin channels of one particular k-point for Fe2MnAl.
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Figure: Sternheimer convergence data for all eigenvalues of both spin channels of all k-points for Fe2MnAl.

⇝ global computational time (all k-points included) is reduced from 83.7 × 103 applications of the
Hamiltonian without the Schur complement to 56.1 × 103 (33% gain).
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Take-home messages and outlooks

Take-home messages:
insulators are easy: δϕn ∈ Span(ϕm)N+1⩽m and the Sternheimer equation is usually
well-conditioned;
metals are more difficult: δϕn = δϕP

n + δϕQ
n

δϕP
n solves the ill-posed Sternheimer equation in Span(ϕm)1⩽m⩽N and we derived a common

framework from the literature which ensures numerical stability (computational time is negligible);
δϕQ

n solves the ill-conditioned Sternheimer equation in Span(ϕm)N+1⩽m and we enhanced its
resolution through a Schur complement. Numerical experiments give satisfying results.

Outlooks:
how to choose Nex ? ⇝ estimate the conditioning of the Schur complement to reach a given
enhancement of the convergence, but still requires a first SCF calculation.
how to adapt on the fly (i.e. during SCF) the number of extra bands ?
implemented by default in DFTK, which allows for efficient Automatic Differentiation
implementations.
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Thanks for your attention !

Joint work with

Éric Cancès Michael F. Herbst Antoine Levitt Benjamin Stamm
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