Linear and nonlinear periodic Schrödinger equations with analytic potentials

Gaspard Kemlin

gaspard.kemlin@ians.uni-stuttgart.de gaspardkemlin.frama.io

IANS-NMH, Stuttgart University

GAMM Jahrestagung 2023, Dresden

University of Stuttgart Germany

2 Spaces of analytic functions

3 The linear case

- The linear Schrödinger equation with source term
- The linear eigenvalue problem
- Convergence of planewave discretization

4 The nonlinear case: a counter-example

5 Conclusion

2 Spaces of analytic functions

3 The linear case

- The linear Schrödinger equation with source term
- The linear eigenvalue problem
- Convergence of planewave discretization

4 The nonlinear case: a counter-example

5 Conclusion

Spaces	analytic	functio
0000		

The linear case 00000 The nonlinear case: a counter-example 000

Conclusion 00

Motivation: Kohn-Sham DFT equations with pseudopotentials

- Popular model in quantum chemistry and materials science for its accuracy and computational efficiency.
- The goal is to solve the nonlinear eigenvalue problem

$$\begin{cases} (H_{\rho_{\Phi}}\phi_{n})(\mathbf{x}) \coloneqq (-\frac{1}{2}\Delta + V_{\text{ext}}(\mathbf{x})) \phi_{n}(\mathbf{x}) + V_{\text{Hxc}}[\rho_{\Phi}](\mathbf{x}) \phi_{n}(\mathbf{x}) = \lambda_{n}\phi_{n}(\mathbf{x}), \quad \lambda_{1} \leqslant \lambda_{2} \leqslant \cdots \leqslant \lambda_{N_{\text{el}}}, \\ \int_{\Omega} \phi_{n}^{*}(\mathbf{x})\phi_{m}(\mathbf{x})d\mathbf{x} = \delta_{nm}, & & & & & & & \\ \rho_{\Phi}(\mathbf{x}) = \sum_{n=1}^{N_{\text{el}}} |\phi_{n}(\mathbf{x})|^{2} \\ \rho_{\Phi}(\mathbf{x}) = \sum_{n=1}^{N_{\text{el}}} |\phi_{n}(\mathbf{x})|^{2} \\ & & & & & & & & & \\ Electronic density \end{cases}$$

Pseudopotentials: replace the core electrons by a noninteracting equivalent potential to reduce computational time $\Rightarrow V_{\text{ext}} = V_{\text{pseudo}}$.

The linear case 00000 The nonlinear case: a counter-example 000

Pseudopotentials and regularity results

Cancès, Chakir, Maday¹

For a specific class of V_{Hxc} , it was proved that if $V_{\text{pseudo}} \in \text{H}^s$ for s > 3/2, then ϕ_n and ρ are in $\text{H}^{s+2} \Rightarrow$ optimal polynomial convergence rates for planewave discretizations in any H^r with -s < r < s + 2. This applies to Troullier-Martins pseudopotentials², for which $s = \frac{7}{2} - \varepsilon$.

¹E. Cancès, R. Chakir, and Y. Maday. Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models. *ESAIM: Mathematical Modelling and Numerical Analysis*, 46(2):341388, 2012.

²N. Troullier and J. L. Martins. Efficient pseudopotentials for plane-wave calculations. *Physical Review B*, 43(3):19932006, 1991.

³S. Goedecker, M. Teter, and J. Hutter. Separable dual-space Gaussian pseudopotentials. *Physical Review B*, 54(3):1703, 1996.

The linear case 00000 The nonlinear case: a counter-example 000

Pseudopotentials and regularity results

Cancès, Chakir, Maday¹

For a specific class of V_{Hxc} , it was proved that if $V_{\text{pseudo}} \in \text{H}^s$ for s > 3/2, then ϕ_n and ρ are in $\text{H}^{s+2} \Rightarrow$ optimal polynomial convergence rates for planewave discretizations in any H^r with -s < r < s + 2. This applies to Troullier-Martins pseudopotentials², for which $s = \frac{7}{2} - \varepsilon$.

What happens for other classes of pseudopotentials ? In particular, Goedecker-Teter-Hutter (GTH) pseudopotentials³, which have entire continuations to the entire complex plane. The latter applies, but is nonoptimal.

¹E. Cancès, R. Chakir, and Y. Maday. Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models. *ESAIM: Mathematical Modelling and Numerical Analysis*, 46(2):341388, 2012.

²N. Troullier and J. L. Martins. Efficient pseudopotentials for plane-wave calculations. *Physical Review B*, 43(3):19932006, 1991.

³S. Goedecker, M. Teter, and J. Hutter. Separable dual-space Gaussian pseudopotentials. *Physical Review B*, 54(3):1703, 1996.

Motivation	Spaces of analytic functions	The linear case	The nonlinear case: a counter-example	Conclusion
000●		00000	000	00
Objectives				

⁴S. Bernstein. Sur la nature analytique des solutions des équations aux dérivées partielles du second ordre. *Mathematische Annalen*, 59(1-2):2076, 1904.

⁵A. Friedman. On the Regularity of the Solutions of Non-Linear Elliptic and Parabolic Systems of Partial Differential Equations. *Indiana University Mathematics Journal*, 7(1):4359, 1958.

⁶I. G. Petrovskii. Sur lanalyticité des solutions des systèmes déquations différentielles. *Matematiceskij sbornik*, 47(1):370, 1939.

Motivation 000●	Spaces of analytic functions	The linear case	The nonlinear case: a counter-example 000	Conclusion OO
Objectives				

■ It is known since a long time⁴⁵⁶ that the solutions to elliptic equations on ℝ^d with real-analytic data have an analytic continuation in a complex neighborhood of ℝ^d.

⁴S. Bernstein. Sur la nature analytique des solutions des équations aux dérivées partielles du second ordre. *Mathematische Annalen*, 59(1-2):2076, 1904.

⁵A. Friedman. On the Regularity of the Solutions of Non-Linear Elliptic and Parabolic Systems of Partial Differential Equations. *Indiana University Mathematics Journal*, 7(1):4359, 1958.

⁶I. G. Petrovskii. Sur lanalyticité des solutions des systèmes déquations différentielles. *Matematiceskij sbornik*, 47(1):370, 1939.

Motivation 000●	Spaces of analytic functions	The linear case	The nonlinear case: a counter-example 000	Conclusion OO
Objectives				

- It is known since a long time⁴⁵⁶ that the solutions to elliptic equations on R^d with real-analytic data have an analytic continuation in a complex neighborhood of R^d.
- The size of this neighborhood is *a priori* unknown. In the periodic setting, it has a direct impact on the convergence of the planewave approximation.

⁴S. Bernstein. Sur la nature analytique des solutions des équations aux dérivées partielles du second ordre. *Mathematische Annalen*, 59(1-2):2076, 1904.

⁵A. Friedman. On the Regularity of the Solutions of Non-Linear Elliptic and Parabolic Systems of Partial Differential Equations. *Indiana University Mathematics Journal*, 7(1):4359, 1958.

⁶I. G. Petrovskii. Sur lanalyticité des solutions des systèmes déquations différentielles. *Matematiceskij sbornik*, 47(1):370, 1939.

Motivation 000●	Spaces of analytic functions	The linear case	The nonlinear case: a counter-example 000	Conclusion OO
Objectives				

- It is known since a long time⁴⁵⁶ that the solutions to elliptic equations on R^d with real-analytic data have an analytic continuation in a complex neighborhood of R^d.
- The size of this neighborhood is *a priori* unknown. In the periodic setting, it has a direct impact on the convergence of the planewave approximation.

 \Rightarrow In this talk, we study this question in 1D.

⁴S. Bernstein. Sur la nature analytique des solutions des équations aux dérivées partielles du second ordre. *Mathematische Annalen*, 59(1-2):2076, 1904.

⁵A. Friedman. On the Regularity of the Solutions of Non-Linear Elliptic and Parabolic Systems of Partial Differential Equations. *Indiana University Mathematics Journal*, 7(1):4359, 1958.

⁶I. G. Petrovskii. Sur lanalyticité des solutions des systèmes déquations différentielles. *Matematiceskij sbornik*, 47(1):370, 1939.

2 Spaces of analytic functions

3 The linear case

- The linear Schrödinger equation with source term
- The linear eigenvalue problem
- Convergence of planewave discretization

4 The nonlinear case: a counter-example

5 Conclusion

Motivation	Spaces of analytic functions	The linear case	The nonlinear case: a counter-example	Conclusion
0000	○●○○○	00000	OOO	00
~				

Some notations

L²_{per}(ℝ, ℂ) : square-integrable 2π-periodic functions on ℝ, (·, ·)_{L²} its usual inner product;
 for u ∈ L²_{per}(ℝ, ℂ) we define its Fourier coefficients

$$\forall \ k \in \mathbb{Z}, \quad \widehat{u}_k := (e_k, u)_{\mathsf{L}^2_{\mathsf{per}}} = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} u(x) \mathsf{e}^{-\mathsf{i}kx} \mathsf{d}x, \quad \mathsf{with} \ e_k(x) = \frac{1}{\sqrt{2\pi}} \mathsf{e}^{\mathsf{i}kx} \mathsf{d}x$$

the periodic Sobolev space of order s:

$$\mathsf{H}^{s}_{\mathsf{per}}(\mathbb{R},\mathbb{C}) \coloneqq \left\{ u \in \mathsf{L}^{2}_{\mathsf{per}}(\mathbb{R},\mathbb{C}) \; \middle| \; \sum_{k \in \mathbb{Z}} (1+|k|^{2})^{s} \left| \widehat{u}_{k} \right|^{2} < \infty \right\}, \quad (u,v)_{\mathsf{H}^{s}_{\mathsf{per}}} \coloneqq \sum_{k \in \mathbb{Z}} (1+|k|^{2})^{s} \, \overline{\widehat{u}_{k}} \, \widehat{v}_{k}.$$

Μ	
0	000

Spaces of analytic functions

The linear case 00000 The nonlinear case: a counter-example

Spaces of analytic functions

Definition

For A > 0 define the space

$$\mathcal{H}_A := \left\{ u \in \mathsf{L}^2_{\mathsf{per}}(\mathbb{R},\mathbb{C}) \; \middle| \; \sum_{k \in \mathbb{Z}} w_A(k) \, |\widehat{u}_k|^2 < \infty
ight\} \; \; \; ext{where} \; \; \; w_A(k) := \mathsf{cosh}(2Ak),$$

endowed with the inner product

$$(u,v)_A \coloneqq \sum_{k \in \mathbb{Z}} w_A(k) \,\overline{\widehat{u}_k} \, \widehat{v}_k.$$

$$\mathcal{H}_{A} \coloneqq \left\{ u \in \mathrm{L}^{2}_{\mathsf{per}}(\mathbb{R},\mathbb{C}) \; \middle| \; \sum_{k \in \mathbb{Z}} w_{A}(k) \left| \widehat{u}_{k} \right|^{2} < \infty
ight\} \; \; \; \mathsf{where} \; \; \; w_{A}(k) \coloneqq \mathsf{cosh}(2Ak),$$

 \mathcal{H}_A can be canonically identified with

$$\widetilde{\mathcal{H}}_{A} := \left\{ u: \Omega_{A} \to \mathbb{C} \text{ analytic} \; \left| \begin{array}{c} [-A, A] \ni y \mapsto u(\cdot + \mathrm{i} y) \in \mathsf{L}^{2}_{\mathsf{per}}(\mathbb{R}, \mathbb{C}) \; \; \mathsf{continuous,} \\ \int_{0}^{2\pi} \left(|u(x + \mathrm{i} A)|^{2} + |u(x - \mathrm{i} A)|^{2} \right) \mathsf{d} x < \infty \end{array} \right\},$$

where $\Omega_A := \mathbb{R} + i(-A, A) \subset \mathbb{C}$, $(u, v)_{\widetilde{\mathcal{H}}_A} = \frac{1}{2} \left((u(\cdot + iA), v(\cdot + iA))_{L^2_{per}} + (u(\cdot - iA), v(\cdot - iA))_{L^2_{per}} \right)$.

$$\mathcal{H}_{A} \coloneqq \left\{ u \in \mathrm{L}^{2}_{\mathrm{per}}(\mathbb{R},\mathbb{C}) \; \left| \; \sum_{k \in \mathbb{Z}} w_{A}(k) \left| \widehat{u}_{k} \right|^{2} < \infty
ight\} \; \; ext{ where } \; \; w_{A}(k) \coloneqq \mathrm{cosh}(2Ak),$$

 $\mathcal{H}_{\textit{A}}$ can be canonically identified with

$$\widetilde{\mathcal{H}}_{A} := \left\{ u: \Omega_{A} \to \mathbb{C} \text{ analytic} \middle| \begin{array}{c} [-A, A] \ni y \mapsto u(\cdot + \mathrm{i}y) \in \mathsf{L}^{2}_{\mathsf{per}}(\mathbb{R}, \mathbb{C}) \text{ continuous,} \\ \int_{0}^{2\pi} \left(|u(x + \mathrm{i}A)|^{2} + |u(x - \mathrm{i}A)|^{2} \right) \mathrm{d}x < \infty \end{array} \right\},$$

where $\Omega_A := \mathbb{R} + i(-A, A) \subset \mathbb{C}$, $(u, v)_{\widetilde{\mathcal{H}}_A} = \frac{1}{2} \left((u(\cdot + iA), v(\cdot + iA))_{L^2_{per}} + (u(\cdot - iA), v(\cdot - iA))_{L^2_{per}} \right)$. **Proof:**

$$\begin{split} \|u\|_{\widetilde{\mathcal{H}}_{A}}^{2} &= \frac{1}{2} \left(\|u(\cdot + iA)\|_{L_{per}}^{2} + \|u(\cdot - iA)\|_{L_{per}}^{2} \right) \\ &= \frac{1}{2} \left(\sum_{k \in \mathbb{Z}} \left| \widehat{u}_{k} e^{-kA} \right|^{2} + \sum_{k \in \mathbb{Z}} \left| \widehat{u}_{k} e^{+kA} \right|^{2} \right) \\ &= \sum_{k \in \mathbb{Z}} w_{A}(k) \left| \widehat{u}_{k} \right|^{2} = \|u\|_{A}^{2}. \end{split}$$

Motivation	Spaces of analytic functions	The linear case	The nonlinear case: a counter-example	Conclusion
0000	0000●	00000		OO
Analytic	potentials			

Proposition

Let B > 0. Then, for all 0 < A < B, the multiplication by a function $V \in \mathcal{H}_B$ defines a bounded operator on \mathcal{H}_A .

Motivation 0000	Spaces of analytic functions 0000●	The linear case	The nonlinear case: a counter-example	Conclusion OO
Analytic pot	entials			

Proposition

Let B > 0. Then, for all 0 < A < B, the multiplication by a function $V \in \mathcal{H}_B$ defines a bounded operator on \mathcal{H}_A .

Proof: Let $V \in \mathcal{H}_B$. It holds, for all 0 < A < B,

$$\begin{split} \|V\|_{\mathcal{L}(\mathcal{H}_{A})}^{2} &= \sup_{u \in \mathcal{H}_{A} \setminus \{0\}} \frac{\|Vu\|_{A}^{2}}{\|u\|_{A}^{2}} = \sup_{u \in \mathcal{H}_{A} \setminus \{0\}} \frac{\|V(\cdot + iA)u(\cdot + iA)\|_{L^{2}_{per}}^{2} + \|V(\cdot - iA)u(\cdot - iA)\|_{L^{2}_{per}}^{2}}{\|u(\cdot + iA)\|_{L^{2}_{per}}^{2} + \|u(\cdot - iA)\|_{L^{2}_{per}}^{2}} \\ &\leq 2 \max\left\{\|V(\cdot + iA)\|_{L^{\infty}_{per}}^{2}, \|V(\cdot - iA)\|_{L^{\infty}_{per}}^{2}\right\} < +\infty. \end{split}$$

2 Spaces of analytic functions

3 The linear case

- The linear Schrödinger equation with source term
- The linear eigenvalue problem
- Convergence of planewave discretization

4 The nonlinear case: a counter-example

5 Conclusion

The linear Schrödinger equation with source term

For $V \in L^2_{per}(\mathbb{R},\mathbb{R})$, $V \geqslant 1$ and $f \in L^2_{per}(\mathbb{R},\mathbb{C})$, we know that the problem

(1) Seek
$$u \in H^2_{per}(\mathbb{R},\mathbb{C})$$
 such that $-\Delta u + Vu = f$ on \mathbb{R}

has a unique solution u satisfying $\|u\|_{L^2_{per}} \leq \frac{\|f\|_{L^2_{per}}}{\alpha}$ and $\|u\|_{H^1_{per}} \leq \|f\|_{H^{-1}_{per}}$, where $\alpha = \lambda_1(-\Delta + V) \ge 1$.

Motivation	Spaces of analytic functions	The linear case	The nonlinear case: a counter-example	Conclusion
0000		○●○○○	000	OO
The linear S	Schrödinger equation wit	h source term		

For $V \in L^2_{per}(\mathbb{R},\mathbb{R})$, $V \geqslant 1$ and $f \in L^2_{per}(\mathbb{R},\mathbb{C})$, we know that the problem

(1) Seek $u \in H^2_{per}(\mathbb{R},\mathbb{C})$ such that $-\Delta u + Vu = f$ on \mathbb{R}

has a unique solution u satisfying $\|u\|_{L^2_{per}} \leq \frac{\|f\|_{L^2_{per}}}{\alpha}$ and $\|u\|_{H^1_{per}} \leq \|f\|_{H^{-1}_{per}}$, where $\alpha = \lambda_1(-\Delta + V) \ge 1$.

Theorem

Let B > 0 and $V \in \mathcal{H}_B$ be real-valued and such that $V \ge 1$ on \mathbb{R} . Then, for all 0 < A < B and $f \in \mathcal{H}_A$, the unique solution u of (1) is in \mathcal{H}_A . Moreover, we have the following estimate

 $\exists C > 0$ independent of f such that $||u||_A \leq C ||f||_A$.

As a consequence, if V and f are entire, then so is u.

Motivation	Spaces of analytic functions	The linear case	The nonlinear case: a counter-example	Conclusion
		00000		

Proof: Let $u \in H^2_{\#}(\mathbb{R}, \mathbb{C})$ be the unique solution to $-\Delta u + Vu = f$. For N > 0, we decompose it into

 $u = u_1 + u_2$

where $u_1 \in X_N$ and $u_2 \in X_N^{\perp}$, where

 $X_N \coloneqq \operatorname{Span}\{e_k, |k| \leq N\}.$

Motivation	Spaces of analytic functions	The linear case	The nonlinear case: a counter-example	Conclusion
		00000		

Proof: Let $u \in H^2_{\#}(\mathbb{R}, \mathbb{C})$ be the unique solution to $-\Delta u + Vu = f$. For N > 0, we decompose it into

 $u = u_1 + u_2$

where $u_1 \in X_N$ and $u_2 \in X_N^{\perp}$, where

 $X_N \coloneqq \operatorname{Span}\{e_k, |k| \leq N\}.$

Then, write the equations satisfied by $u_{1,2}$ by projecting $-\Delta u + Vu = f$ onto X_N and X_N^{\perp} :

- $u_1 \in \mathcal{H}_A$ as it has finite Fourier support;
- $u_2 \in \mathcal{H}_A$ for N large enough: the restriction of $-\Delta + V$ to X_N^{\perp} is invertible and its inverse is in $\mathcal{L}(\mathcal{H}_A)$ if N is large enough.

Put things together to get that $u = u_1 + u_2 \in \mathcal{H}_A$ for N large enough.

Motivation	Spaces of analytic functions	The linear case	The nonlinear case: a counter-example	Conclusion
0000		○○○●○	000	OO
The linear eiger	nvalue problem			

We study the \mathcal{H}_{A} regularity of the solutions to

(2)

$$\begin{cases} -\Delta u + Vu = \lambda u, \\ \|u\|_{\mathsf{L}^2_{\mathsf{per}}(\mathbb{R},\mathbb{C})} = 1. \end{cases}$$

Motivation	Spaces of analytic functions	The linear case	The nonlinear case: a counter-example	Conclusion
0000		○○○●○	000	00
The linear eigen	value problem			

We study the \mathcal{H}_A regularity of the solutions to

(2)
$$\begin{cases} -\Delta u + Vu = \lambda u, \\ \|u\|_{L^2_{per}(\mathbb{R},\mathbb{C})} = 1. \end{cases}$$

Theorem

Let B > 0, $V \in \mathcal{H}_B$ be real-valued, and $(u, \lambda) \in H^2_{per}(\mathbb{R}, \mathbb{C}) \times \mathbb{R}$ a normalized eigenmode of $H = -\Delta + V$, with isolated eigenvalue (i.e. a solution to (2)). Then, u is in \mathcal{H}_A for all 0 < A < B. As a consequence, if V is entire, then so is u.

1

Proof: very similar to Hu = f.

Μ	
0	000

Spaces of analytic functions

The linear case ○○○○● The nonlinear case: a counter-example

Conclusion 00

Consequences on the convergence of planewave discretization

We study the convergence of planewave approximation of the linear eigenvalue problem (2). **Planewave approximation:** variational approximation in the finite dimensional space

 $X_N = \operatorname{Span}\{e_k, \ |k| \leqslant N\}.$

Spaces of analytic functions

The linear case ○○○○● The nonlinear case: a counter-example

Conclusion 00

Consequences on the convergence of planewave discretization

We study the convergence of planewave approximation of the linear eigenvalue problem (2). **Planewave approximation:** variational approximation in the finite dimensional space

 $X_N = \operatorname{Span}\{e_k, \ |k| \leqslant N\}.$

(3)
$$\begin{cases} \text{Seek } (u_N, \lambda_N) \in X_N \times \mathbb{R} \text{ such that } \|u_N\|_{L^2_{\text{per}}(\mathbb{R},\mathbb{C})} = 1 \text{ and} \\ \forall v_N \in X_N, \quad \int_0^{2\pi} \overline{\nabla u_N} \cdot \nabla v_N + \int_0^{2\pi} V \overline{u_N} v_N = \lambda_N \int_0^{2\pi} \overline{u_N} v_N, \end{cases}$$

Spaces of analytic functions

The linear case ○○○○● The nonlinear case: a counter-example

Conclusion 00

Consequences on the convergence of planewave discretization

We study the convergence of planewave approximation of the linear eigenvalue problem (2). **Planewave approximation:** variational approximation in the finite dimensional space

 $X_N = \operatorname{Span}\{e_k, \ |k| \leqslant N\}.$

(3)
$$\begin{cases} \text{Seek } (u_N, \lambda_N) \in X_N \times \mathbb{R} \text{ such that } \|u_N\|_{L^2_{\mathsf{per}}(\mathbb{R},\mathbb{C})} = 1 \text{ and} \\ \forall v_N \in X_N, \quad \int_0^{2\pi} \overline{\nabla u_N} \cdot \nabla v_N + \int_0^{2\pi} V \overline{u_N} v_N = \lambda_N \int_0^{2\pi} \overline{u_N} v_N, \end{cases}$$

Theorem

Let B > 0, $V \in \mathcal{H}_B$ be real-valued, $j \in \mathbb{N}^*$ and 0 < A < B. Let λ_j the lowest j^{th} eigenvalue of the self-adjoint operator $H = -\Delta + V$ on $L^2_{\text{per}}(\mathbb{R}, \mathbb{C})$ counting multiplicities, and $\mathcal{E}_j = \text{Ker}(H - \lambda_j)$ the corresponding eigenspace. For N large enough, we denote by $\lambda_{j,N}$ the lowest j^{th} eigenvalue of (3), and by $u_{j,N}$ an associated normalized eigenvector. Then, there exists a constant $c_{j,A} \in \mathbb{R}_+$ such that

 $\forall \ N > 0 \ \text{s.t.} \ 2\lfloor N \rfloor + 1 \geqslant j, \quad d_{\mathrm{H}^{1}_{\mathrm{ner}}}(u_{j,N},\mathcal{E}_{j}) \leqslant c_{j,A} \exp\left(-AN\right) \quad \text{and} \quad 0 \leqslant \lambda_{j,N} - \lambda_{j} \leqslant c_{j,A} \exp\left(-2AN\right).$

2 Spaces of analytic functions

3 The linear case

- The linear Schrödinger equation with source term
- The linear eigenvalue problem
- Convergence of planewave discretization

4 The nonlinear case: a counter-example

5 Conclusion

Spaces of analytic functions	The linear case	The nonlinear case: a counter-example	Conclusion
		000	

The nonlinear case: a counter-example

Consider the Gross-Pitaevskii-type equation, for f with an entire analytic continuation:

(4)
$$-\varepsilon\Delta u_{\varepsilon} + u_{\varepsilon} + u_{\varepsilon}^{3} = f := \mu \sin$$

otivation	Spaces of analytic functions	The linear case	The nonlinear case: a counter-example $O igodot O$	Conclusion
DOO	00000	00000		00

The nonlinear case: a counter-example

Consider the Gross-Pitaevskii-type equation, for f with an entire analytic continuation:

(4)
$$-\varepsilon\Delta u_{\varepsilon}+u_{\varepsilon}+u_{\varepsilon}^{3}=f:=\mu\sin.$$

Let $\psi_{\varepsilon}(y) := \operatorname{Im}(u_{\varepsilon}(iy))$. It solves the ODE:

 $\begin{cases} \varepsilon \ddot{\psi}_{\varepsilon} + \psi_{\varepsilon} - \psi_{\varepsilon}^{3} = \mu \sinh, \\ \psi_{\varepsilon}(0) = 0, \quad \dot{\psi}_{\varepsilon}(0) = u_{\varepsilon}'(0). \end{cases}$

otivation	Spaces of analytic functions	The linear case	The nonlinear case: a counter-example	Conclusion
DOO		00000	⊙●○	OO

The nonlinear case: a counter-example

Consider the Gross-Pitaevskii-type equation, for f with an entire analytic continuation:

(4)
$$-\varepsilon\Delta u_{\varepsilon} + u_{\varepsilon} + u_{\varepsilon}^{3} = f := \mu \sin \theta$$

Let $\psi_{\varepsilon}(y) := \operatorname{Im}(u_{\varepsilon}(iy))$. It solves the ODE:

$$egin{cases} arepsilon \dot{\psi}_arepsilon + \psi_arepsilon - \psi_arepsilon^3 = \mu \sinh, \ \psi_arepsilon(0) = 0, \quad \dot{\psi}_arepsilon(0) = u_arepsilon'(0). \end{cases}$$

As soon as ψ_{ε} reaches $1 + \eta$ for some $\eta > 0$ (which can be justified with combined numerical and convexity arguments), we can use comparison theorems for systems of ODE to prove that ψ_{ε} is bounded from below by the solution to the ODE

$$egin{cases} \dot{\xi}_{arepsilon,\eta} = rac{1}{2\sqrt{arepsilon/arepsilon/2}}(\xi^2_{arepsilon,\eta}-1), \ \xi_{arepsilon,\eta}(y_\eta) = 1+\eta, \end{cases}$$

whose solution is defined only up to $Y_{\varepsilon,\eta} = \sqrt{\frac{\varepsilon}{2}} \log \left(1 + \frac{2}{\eta}\right) + y_{\eta}$. As ψ_{ε} is bounded from below by $\xi_{\varepsilon,\eta}$, it is defined only up to $Y_{\varepsilon} \leqslant Y_{\varepsilon,\eta}$ and thus u_{ε} is not entire.

Motivation	Spaces of analytic functions	The linear case	The nonlinear case: a counter-example	Conclusion
0000		00000	000	●O
Take-home mes	sages			

- Analyticity of the input data (source term, potentials) automatically conveys to the solution in the linear case. In particular, if the data is entire, so is the solution.
- This has direct consequence on the convergence of planewave approximation: the rate is exponential. In particular, for entire data, the numerical approximation converges faster than any exponential.
 - \Rightarrow justifies the use of GTH pseudopotentials (*e.g.* in DFTK, see Michael F. Herbst's talk)

Motivation	Spaces of analytic functions	The linear case	The nonlinear case: a counter-example	Conclusion
0000		00000	000	●O
Take-home mes	sages			

- Analyticity of the input data (source term, potentials) automatically conveys to the solution in the linear case. In particular, if the data is entire, so is the solution.
- This has direct consequence on the convergence of planewave approximation: the rate is exponential. In particular, for entire data, the numerical approximation converges faster than any exponential.
 - \Rightarrow justifies the use of GTH pseudopotentials (*e.g.* in DFTK, see Michael F. Herbst's talk)
- In the nonlinear case, such results are not true anymore and determining the analyticity band size must be dealt with case by case.

 \Rightarrow in the periodic setting, planewave approximation with GTH pseudopotentials still converges exponentially

Pre-print available at https://hal.inria.fr/hal-03692851v2.

Joint work with

Éric Cancès CERMICS, ENPC

Antoine Levitt LMO, Univ. Paris-Saclay

Merci !