
Automatic Differentiation for Quantum Electronic Structure
Differentiable Density Functional Theory in DFTK.jl

Markus Towara1, Niklas Schmitz2, Gaspard Kemlin3

JuliaCon 2022
1 RWTH Aachen University
2 TU Berlin
3 École des Ponts ParisTech & Inria Paris

Team Intro

Markus Towara
PostDoc @ RWTH Aachen University. Background in AD and
numerical simulation (Finite Volume CFD, mainly C++).

Niklas Schmitz
MSc Student @ TU Berlin. Computer science and machine learning.

Gaspard Kemlin
PhD Candidate @ École des Ponts ParisTech & Inria Paris, team
MATHERIALS. Background in applied mathematics and numerical
analysis.

Joint work with M.F. Herbst and A. Levitt

1

Overview

Introduction to DFTK.jl and DFT

Foundations of AD

Application of AD to DFTK.jl

Demo

2

Introduction to DFTK.jl and DFT

Density-functional toolkit1 – https://dftk.org

• Julia code for plane-wave DFT

• Fully composable with Julia ecosystem:

• Arbitrary precision
• Algorithmic Differentiation (AD)
• Numerical error control

• Both suitable for mathematical developments and relevant applications
• 1D problems, toy models for rigourous analysis
• DFT > 800 electrons

• 3 years of development (M.F. Herbst and A. Levitt) and ∼ 7k lines of code

1M. F. Herbst, A. Levitt and E. Cancès. JuliaCon Proceedings, 3, 69 (2021).
3

https://dftk.org
https://doi.org/10.21105/jcon.00069

Typical Workflow of DFT Simulations

1. Setup

• model

• atoms positions & types

• lattice

• basis

2. Solve

• compute self-consistent field

• obtain wave function

3. Postprocess
• energy

• forces

• stresses

• etc.

We want to backpropagate through all phases.

4

Density Functional Theory in one slide

• Self-Consistent Field (SCF) procedure

0 = f(P∗, λ) = fFD(H
λ(P∗))− P∗ ⇔ P∗ ∈ argmin Eλ(P)

• P : density matrix (describes the electronic states)

• λ : parameters (model, atomic positions, electric
field, . . .)

• fFD : Fermi-Dirac function, for (εn, ϕn)n∈N eigenpairs
of H

fFD(H) =
∑
n∈N

fFD(εn)|ϕn⟩⟨ϕn|

• Hλ: nonlinear Kohn-Sham Hamiltonian

• E: energy

Isosurface of ground-state electron
density of Fullerene, as calculated

with DFT (source: Wikimedia
Commons)

• Defines P (λ) with implicit dependency on the parameters 5

Why are we so interested in derivatives ?

Most quantities of interest are computed as derivatives of another quantity of
interest:

dA(P)

dλ
=

∂A

∂λ
+

∂A

∂P

∂P

∂λ

• Forces: A = E, λ = R (atomic positions)
• Stresses: A = E, λ = L (unit cell vectors)
• Polarizability: A = dipole moment, λ = E (electric field)
• Sensitivity to any parameter (e.g. model parameters) for ML applications
• . . .

6

Hellmann-Feynman theorem

dA(P)

dλ
=

∂A

∂λ
+

∂A

∂P

∂P

∂λ

Special case of A = E:

• Recall P∗ ∈ argmin E(P) ⇒ ∂E

∂P

∣∣∣∣
∗
= 0

• Hellmann-Feynman theorem

dE

dλ

∣∣∣∣
∗
=

∂E

∂λ

∣∣∣∣
∗

• First energy derivatives are (comparatively) easy!

7

Response theory

• If A ̸= E we need ∂P
∂λ !

• Consider at λ = λ∗ and corresponding P∗ and H∗:

0 =
∂

∂λ

[
fFD

(
Hλ(P)

)
− P

]∣∣∣∣
∗

= f ′
FD(H∗) ·

∂Hλ

∂λ

∣∣∣∣
∗
+

∂P

∂λ

∣∣∣∣
∗
· ∂

∂P

[
fFD

(
Hλ(P)

)
− P

]∣∣∣
∗

= f ′
FD(H∗) ·

∂Hλ

∂λ

∣∣∣∣
∗
+

∂P

∂λ

∣∣∣∣
∗
·
[
f ′

FD(H∗) ·K(P∗)− I
]

= χ0(H∗) ·
∂Hλ

∂λ

∣∣∣∣
∗
− ∂P

∂λ

∣∣∣∣
∗
· [I − χ0(H∗) ·K(P∗)]

where K =
∂Hλ∗

∂P
and χ0(H∗) = f ′

FD(H∗)

8

Sternheimer equation

Sternheimer equation:

∂P

∂λ

∣∣∣∣
∗
= − [Ω(H∗) +K(P∗)]

−1 ∂Hλ

∂λ

∣∣∣∣
∗

where Ω(H∗) = −
[
χ0(H∗)

]−1
.

Ω(H∗) +K(P∗) is self-adjoint ⇒ good for both tangent and adjoint mode!

9

Foundations of AD

AD Basics2

• Assume y = f(x) with x ∈ Rn, y ∈ Rm

• Forward (tangent) AD: ẏ = ḟ(x, ẋ) = ∇f · ẋ
Get Jacobian at cost O(n · cost(f)) by letting ẋ ∈ Rn range over ei

• Reverse (adjoint) AD: x̄ = f̄(x, ȳ) = ȳ · ∇f

Get Jacobian at cost O(m · cost(f)) by letting ȳ ∈ Rm range over ei

• Often m ≪ n or even m = 1 (e.g. Least Squares sum of outputs)
• Modes can be recursively combined to obtain higher derivatives
• Sparsity in Jacobians / Hessians can be exploited by coloring approaches

2A. Griewank, A. Walther: Evaluating Derivatives, 2nd Edition

10

Chain Rule

• Suppose function h(g(f(x)))

• Then dh
dx = dh

dg · dg
df · df

dx

• Order in which product is evaluated can be crucial:
• dh

dg · (dgdf · df
dx) forward (tangent) mode

• (dhdg · dg
df) ·

df
dx adjoint (reverse) mode

• However: Reverse mode differentiation can (in general) not be performed
alongside primal evaluation (split mode AD)

• We use Zygote for reverse AD and heavily rely on ChainRules.jl to specify
custom derivatives for parts of the chain rule product

11

Custom Backpropagation Rules

Two main reasons to specify custom rules:

• Use analytical (domain) knowledge, e.g. for linear equation systems3:

x = A \ b ⇒ b̄ = AT \ x̄

Ā = −x · b̄T

• Working around issues with adjoint code generation:
(e.g. mutation not supported by Zygote, calls into foreign code) which
cannot feasibly be fixed in the primal codebase (for e.g. performance
reasons).

3M. Giles: Collected Matrix Derivative Results for Forward and Reverse Mode Algorithmic
Differentiation, 2008

12

ChainRules Example for Linear Equations

• Custom ChainRules rrule returns primal result, as well as a callback which
will be called during backpropagation

• Primal can be left unchanged or rewritten
• Pullback can be written explicitly or generated by AD (e.g. from altered

primal) 13

Application of AD to DFTK.jl

Common AD Rule Patterns

The classic
• handwritten derivative

but also
• linear functions (are their own derivative)
• alternative primal (callback into AD)
• implicit differentiation

14

Linear Rules

Linear frules
“This function is linear and thus its own derivative.
Apply it on forward tangents.”

Linear rrules
“This function is linear and thus its own derivative.
Apply its transpose on reverse cotangents.”

Example f : Fast Fourier Transform

15

Example: Custom FFT Rules

Figure 1: Reverse-mode rules leveraging FFT duality

General theme: primitive derivatives in terms of primitives

16

Example: Custom FFT Rules

Figure 2: Reverse-mode rules leveraging FFT duality

General theme: primitive derivatives in terms of primitives

17

Alternative Primal Rules

Alternative Primal
“To differentiate this complicated function, differentiate this simpler equivalent
function.”

Uses ChainRules.jl feature for calling back into AD4.

• mostly for prototyping
• simplified is e.g. non-mutating
• can sidestep large non-differentiable auxiliary computations

4https://juliadiff.org/ChainRulesCore.jl/stable/rule_author/superpowers/

ruleconfig.html

18

https://juliadiff.org/ChainRulesCore.jl/stable/rule_author/superpowers/ruleconfig.html
https://juliadiff.org/ChainRulesCore.jl/stable/rule_author/superpowers/ruleconfig.html

Implicit Differentiation: SCF rrule

Figure 3: The most central rrule: Differentiating the SCF solver.

19

Demo

Demo: Polarizability (Forward + Reverse Mode, FD)

https://docs.dftk.org/stable/examples/forwarddiff/

https://github.com/JuliaMolSim/DFTK.jl/blob/zygote-juliacon/examples/

zygote_polarizability.jl
20

https://docs.dftk.org/stable/examples/forwarddiff/
https://github.com/JuliaMolSim/DFTK.jl/blob/zygote-juliacon/examples/zygote_polarizability.jl
https://github.com/JuliaMolSim/DFTK.jl/blob/zygote-juliacon/examples/zygote_polarizability.jl

Summary & Outlook

Summary:

• Self-adjointness of the SCF is leveraged extensively
• Implicit differentiation ties well with ChainRules
• Writing performant code which is AD friendly is hard

Up next:

• Prototype different AD solutions (e.g. Enzyme)
• Publications for forward and reverse AD in progress

21

Acknowledgements

M.F. Herbst A. Levitt

Funded under the Excellence Strategy of the Federal Government and the Länder

22

	Introduction to DFTK.jl and DFT
	Foundations of AD
	Application of AD to DFTK.jl
	Demo

