Analysis of SCF and minimization algorithms for electronic structure

Éric Cancès, Gaspard Kemlin, Antoine Levitt

gaspard.kemlin@enpc.fr PhD student with É. Cancès & A. Levitt, CERMICS, ENPC & Inria Paris, team MATHERIALS

EMC2 Seminar, October 16th 2020

European Research Council Established by the European Commission

1 Introduction

- General framework
- Mathematical framework
- 2 Some results on optimization on Grassmann manifolds

3 Algorithms analysis and comparison

- Projected gradient algorithm
- SCF algorithm
- Comparison

4 Numerical tests

- A toy model with tunable gap
- Local convergence for 1D Gross-Pitaevskii equation
- Convergence in KS-DFT

5 Conclusion and outlooks

1 Introduction

- General framework
- Mathematical framework

2 Some results on optimization on Grassmann manifolds

3 Algorithms analysis and comparison

- Projected gradient algorithm
- SCF algorithm
- Comparison

4 Numerical tests

- A toy model with tunable gap
- Local convergence for 1D Gross-Pitaevskii equation
- Convergence in KS-DFT

5 Conclusion and outlooks

Introduction 0000000	Optimality conditions	Algorithms analysis and comparison	Numerical tests	Conclusion and outlooks
Flectro	nic structure	2		

Our goal: compute the ground state energy of the many-body Hamiltonian $H_{\rm e}$ for a given system with N electrons

 $\min\left\{ \langle \Psi | \mathcal{H}_{\mathsf{e}} | \Psi \rangle \mid \Psi = (\psi_i) \in \mathsf{L}^2(\mathbb{R}^3, \mathbb{C})^N, \ \langle \psi_i | \psi_j \rangle = \delta_{ij} \right\}.$

 \rightsquigarrow too hard to solve !

approximation;

2 discretization;

3 resolution. \leftarrow we focus on this

Introduction	Optimality conditions	Algorithms analysis and comparison	Numerical tests	Conclusion and outlooks
Genera	l framework			

General form of the energy

$$E(P) \coloneqq \operatorname{Tr}(H_0P) + E_{nl}(P),$$

where

- *H*⁰ is the core Hamiltonian;
- *E*_{nl} models the electron-electron interaction depending on the model.

Examples: Kohn-Sham DFT, Hartree-Fock, Gross-Pitaevskii,...

Introduction	Optimality conditions 000	Algorithms analysis and comparison	Numerical tests 00000000	Conclusion and outlooks
Genera	l framework			

Constrained minimization:

(1)
$$\inf_{P \in \mathcal{M}_N} E(P) \coloneqq \operatorname{Tr}(H_0 P) + E_{\operatorname{nl}}(P),$$

$$\mathcal{M}_{N} \coloneqq \left\{ P \in \mathbb{R}^{N_{b} \times N_{b}} \mid P = P^{*}, \ \mathrm{Tr}(P) = N, \ P^{2} = P \right\}.$$

Euler-Lagrange equations:

(2)
$$\begin{cases} (H_0 + \nabla E_{nl}(P))\phi_i = \varepsilon_i\phi_i, \ \varepsilon_1 \leqslant \cdots \leqslant \varepsilon_N \\ \phi_i^*\phi_j = \delta_{ij}, \\ P = \sum_{i=1}^N \phi_i\phi_i^*. \end{cases}$$

 $\rightsquigarrow E_{nl} = 0$: linear eigenvalue problem.

Introduction	Optimality conditions	Algorithms analysis and comparison	Numerical tests 00000000	Conclusion and outlooks
Mather	natical fram	ework		

- $\mathcal{H} := \left(\mathbb{R}_{\text{sym}}^{N_b \times N_b}, \|\cdot\|_{\mathsf{F}}\right)$ endowed with the Frobenius scalar product $\langle A, B \rangle_{\mathsf{F}} := \operatorname{Tr}(AB)$;
- $H(P) = \nabla E(P)$ and $K(P) := \prod_P \nabla^2 E(P) \prod_P$;
- Π_P is the orthogonal projection on $\mathcal{T}_P \mathcal{M}_N$:

$$\Pi_P(X) = PX(1-P) + (1-P)XP.$$

In the decomposition $\mathcal{H} = \operatorname{Ran}(P) \oplus \operatorname{Ran}(1-P)$, we have:

$$P = \begin{bmatrix} 1_N & 0 \\ 0 & 0 \end{bmatrix} \text{ and } \mathcal{T}_P \mathcal{M}_N := \left\{ X = \begin{bmatrix} 0 & \times \\ \times^* & 0 \end{bmatrix} \right\}.$$

Introduction	Optimality conditions	Algorithms analysis and comparison	Numerical tests	Conclusion and outlooks
Mather	natical fram	ework		

• $R: \mathcal{H} \to \mathcal{M}_N$ is a retraction s.t.

 $R(P + \delta P) = P + \prod_P \delta P + O(\delta P^2)$ for $P \in \mathcal{M}_N$.

Introduction	Optimality conditions	Algorithms analysis and comparison	Numerical tests	Conclusion and outlooks
Mather	natical fram	ework		

Assumption 1 $E_{nl} : \mathcal{H} \to \mathbb{R}$ is twice continuously differentiable, and thus so is E.

Assumption 2 $P_* \in \mathcal{M}_N$ is a nondegenerate local minimizer of (1) in the sense that there exists some $\eta > 0$ such that, for $P \in \mathcal{M}_N$ in a neighborhood of P_* , we have

 $E(P) \ge E(P_*) + \eta ||P - P_*||_{\mathsf{F}}^2.$

Let $H_* := H(P_*)$ and $K_* := K(P_*)$.

Introduction	Optimality conditions	Algorithms analysis and comparison	Numerical tests	Conclusion and outlooks
Approa	ch			

Study, analyze and compare two algorithms,

	SCF	Gradient descent
Classical	Damped SCF	Project gradient
With memory	Anderson	LBFGS

Table: Classes of algorithms

 \rightsquigarrow which one is better, why ?

Introduction	Optimality conditions	Algorithms analysis and comparison	Numerical tests	Conclusion and outlooks
Annroa	ch			

Study, analyze and compare two algorithms,

	SCF	Gradient descent
Classical	Damped SCF	Project gradient
With memory	Anderson	LBFGS

Table: Classes of algorithms

 \rightsquigarrow which one is better, why ?

Introduction	Optimality conditions	Algorithms analysis and comparison	Numerical tests	Conclusion and outlooks
	000			

1 Introduction

General framework

Mathematical framework

2 Some results on optimization on Grassmann manifolds

3 Algorithms analysis and comparison

- Projected gradient algorithm
- SCF algorithm
- Comparison

4 Numerical tests

- A toy model with tunable gap
- Local convergence for 1D Gross-Pitaevskii equation
- Convergence in KS-DFT

5 Conclusion and outlooks

Introduction 00000000	Optimality conditions 000	Algorithms analysis and comparison	Numerical tests	Conclusion and outlooks
First or	der conditio	n		

The first-order optimality condition is $\Pi_{P_*}(H_*) = 0$, which gives

$$P_*H_*(1-P_*)=(1-P_*)H_*P_*=0$$

• $[H_*, P_*] = 0 \Rightarrow H_*$ and P_* can be codiagonalized;

- if $(\phi_i)_{1 \le i \le N_b}$ is an o.n.b. of eigenvectors of H_* ordered by increasing eigenvalues, then $P_* = \sum_{i \in \mathcal{I}} \phi_i \phi_i^*$, with \mathcal{I} the set of occupied orbitals;
- $\mathcal{I} \subset \{1, \ldots, N_b\}$ and $|\mathcal{I}| = N$:
 - $\mathcal{I} = \{1, \dots, N\}$: Aufbau principle;
 - $\mathcal{I} = \{1, \dots, N\}$ and $\varepsilon_N < \varepsilon_{N+1}$: strong *Aufbau* principle.

Introduction 00000000	Optimality conditions	Algorithms analysis and comparison	Numerical tests	Conclusion and outlooks
Second	order condi	tion		

The second order optimality condition reads

$$\forall X \in \mathcal{T}_{P_*}\mathcal{M}_N, \ \langle X, (\Omega_* + \mathcal{K}_*)X \rangle_{\mathsf{F}} \geq \eta \, \|X\|_{\mathsf{F}}^2$$

the operator Ω_{*} : T_{P*}M_N → T_{P*}M_N is defined by, for i ∈ I and a ∉ I,

 $(\Omega_*X)_{ia} = (\varepsilon_a - \varepsilon_i)X_{ia}$ and $(\Omega_*X)_{ai} = (\varepsilon_a - \varepsilon_i)X_{ai}$,

so that the gap $\nu = \min_{a \notin \mathcal{I}} \varepsilon_a - \max_{i \in \mathcal{I}} \varepsilon_i$ is the smallest eigenvalue of Ω_* ;

• $\Omega_* + K_*$ can be interpreted as the Hessian of the energy on the manifold, Ω_* represents the influence of the curvature.

1 Introduction

General framework

- Mathematical framework
- 2 Some results on optimization on Grassmann manifolds

3 Algorithms analysis and comparison

- Projected gradient algorithm
- SCF algorithm
- Comparison

4 Numerical tests

- A toy model with tunable gap
- Local convergence for 1D Gross-Pitaevskii equation
- Convergence in KS-DFT

5 Conclusion and outlooks

Introduction	Optimality conditions	Algorithms analysis and comparison	Numerical tests	Conclusion and outlooks
		00000000		

Projected gradient algorithm

Data:
$$P^0 \in \mathcal{M}_N$$

while convergence not reached do
 $P^{k+1} := R \left(P^k - \beta \prod_{P^k} \nabla E(P^k) \right)$;
end

Introduction 00000000	Optimality conditions	Algorithms analysis and comparison	Numerical tests	Conclusion and outlooks

Convergence

Theorem (Classical result)

Let $E : \mathcal{H} \to \mathbb{R}$ satisfy Assumption 1 and 2 with P_* a local minimizer of (1). Then, if $P^0 \in \mathcal{M}_N$ is close enough to P_* , the iterations

$$P^{k+1} \coloneqq R\left(P^k - \beta \Pi_{P^k} \nabla E(P^k)\right)$$

linearly converge to P_* for $\beta > 0$ small enough, with asymptotic rate $r(1 - \beta J_{\text{grad}})$ where $J_{\text{grad}} \coloneqq \Omega_* + K_*$.

Introduction	Optimality conditions	Algorithms analysis and comparison	Numerical tests	Conclusion and outlooks
		00000000		

Proof: Apply lemma to

$$f: \begin{vmatrix} \mathcal{M}_{N} & \to & \mathcal{M}_{N} \\ P & \mapsto & R\left(P - \beta \Pi_{P}\left(\nabla E\left(P\right)\right)\right) \end{vmatrix}$$

and show that $r(df(P_*)) < 1$:

1 the differential at P_* on the tangent plane $\mathcal{T}_{P_*}\mathcal{M}_N$ is

$$df(P_*) = 1 - \beta (K_* + \Omega_*);$$

2 recall the second order condition:

 $K_* + \Omega_* \ge \eta > 0,$

therefore, for β small enough, $r(df(P_*)) < 1$.

Introduction 00000000	Optimality conditions	Algorithms analysis and comparison	Numerical tests	Conclusion and outlooks

SCF algorithm

 $\mathcal{A}(P^k) = \sum_{i=1}^{N} \phi_i^k \left(\phi_i^k\right)^*$

Data:
$$P^{0} \in \mathcal{P}_{N}$$

while convergence not reached do

$$\begin{vmatrix} & \text{solve} \\ & H(P^{k})\phi_{i}^{k} = \varepsilon_{i}^{k}\phi_{i}^{k}, \quad \varepsilon_{1}^{k} \leq \cdots \leq \varepsilon_{N}^{k} < \varepsilon_{N+1}^{k} \\ & (\phi_{i}^{k})^{*}\phi_{j}^{k} = \delta_{ij}, \\ & P^{k+1} \coloneqq R\left(P^{k} + \beta \prod_{P^{k}} \left(\mathcal{A}(P^{k}) - P^{k}\right)\right); \\ \text{end} \end{aligned}$$

Introduction 00000000	Optimality conditions	Algorithms analysis and comparison	Numerical tests	Conclusion and outlooks

SCF algorithm

 $\mathcal{A}(P^k) = \sum_{i=1}^{N} \phi_i^k \left(\phi_i^k\right)^*$

Data: $P^{0} \in \mathcal{P}_{N}$ while convergence not reached do $\begin{vmatrix} & \text{solve} \\ & \left\{ \begin{array}{l} H(P^{k})\phi_{i}^{k} = \varepsilon_{i}^{k}\phi_{i}^{k}, & \varepsilon_{1}^{k} \leq \cdots \leq \varepsilon_{N}^{k} < \varepsilon_{N+1}^{k} \\ & \left(\phi_{i}^{k}\right)^{*}\phi_{j}^{k} = \delta_{ij}, \\ & P^{k+1} \coloneqq R\left(P^{k} + \beta \prod_{P^{k}} \left(\mathcal{A}(P^{k}) - P^{k}\right)\right); \\ \text{end} \end{aligned}\right.$

Introduction 00000000	Optimality conditions	Algorithms analysis and comparison	Numerical tests	Conclusion and outlooks
<u> </u>				

Convergence

Theorem

Let $E : \mathcal{H} \to \mathbb{R}$ satisfy Assumption 1 and 2 with P_* a local minimizer of (1). Assume that P_* satisfies the strong Aufbau principle

$$\mathcal{A}(P_*) = P_*$$
 and $u \coloneqq arepsilon_{N+1} - arepsilon_N > 0.$

Then, for $\beta > 0$ small enough and $P^0 \in \mathcal{M}_N$ close enough to P_* , the iterations

$$P^{k+1} \coloneqq R\left(P^k + \beta \Pi_{P^k}\left(\mathcal{A}(P^k) - P^k\right)\right)$$

linearly converge to P_* , with asymptotic rate $r(1 - \beta J_{SCF})$ where $J_{SCF} := 1 + \Omega_*^{-1} K_*$.

Introduction	Optimality conditions	Algorithms analysis and comparison	Numerical tests	Conclusion and outlooks
		0000000000		

Proof: Apply lemma to

$$f: \begin{vmatrix} \mathcal{M}_{N} & \to & \mathcal{M}_{N} \\ P & \mapsto & R\left(P + \beta \Pi_{P}\left(\mathcal{A}(P) - P\right)\right) \end{vmatrix}$$

and show that $r(df(P_*)) < 1$:

- **1** compute the differential of \mathcal{A} on $\mathcal{T}_{P_*}\mathcal{M}_N$ with a perturbation method: $d\mathcal{A}(P_*) = -\Omega_*^{-1}K_*$;
- 2 the differential at P_* on $\mathcal{T}_{P_*}\mathcal{M}_N$ is

$$df(P_*) = 1 - \beta(1 + \Omega_*^{-1}K_*);$$

3 $1 + \Omega_*^{-1} K_* \sim \Omega_*^{-1/2} (\Omega_* + K_*) \Omega_*^{-1/2}$ which has real positive eigenvalues by the second order condition and therefore, for β small enough, $r(df(P_*)) < 1$.

Introduction 00000000	Optimality conditions	Algorithms analysis and comparison	Numerical tests	Conclusion and outlooks

Comparing the Jacobian matrices

Both algorithms have Jacobian matrices of the form $1 - \beta J$ with

- Gradient descent: $J_{grad} = \Omega_* + K_*$ is self-adjoint for $\langle \cdot, \cdot \rangle_F$;
- SCF: $J_{SCF} = 1 + \Omega_*^{-1} K_*$ is self-adjoint for $\langle \Omega_* \cdot, \cdot \rangle_F$.

Hence

- in the linear regime, the SCF can be seen as a matrix splitting method for the gradient descent;
- the smaller the gap, the more difficult the convergence of the SCF.

Introduction	Optimality conditions	Algorithms analysis and comparison	Numerical tests	Conclusion and outlooks
		000000000		

Comparing the Jacobian matrices

Fastest convergence: eigenvalues of $1 - \beta J$ as close to 0 as possible. If λ_{\min} and λ_{\max} are the smallest and largest eigenvalues of J, the optimal step is $\beta_* = 2/(\lambda_{\min} + \lambda_{\max})$ and the rate of convergence is

$$r=rac{\kappa-1}{\kappa+1}$$
 with $\kappa=rac{\lambda_{\mathsf{max}}}{\lambda_{\mathsf{min}}}$

Introduction 0000000

Optimality conditions

Algorithms analysis and comparison

Numerical tests

Conclusion and outlooks

Comparing the Jacobian matrices

$$\begin{aligned} J_{\mathsf{grad}} &= \Omega_* + \mathcal{K}_* \\ \kappa(J_{\mathsf{grad}}) &\leqslant \frac{\|\Omega_*\|_{\mathsf{op}} + \|\mathcal{K}_*\|_{\mathsf{op}}}{\eta} \end{aligned}$$

- no relationship between η and the gap ν ;
- the smaller η, the slower the convergence;
- the bigger $\|\Omega_*\|_{op} = \varepsilon_{N_b} - \varepsilon_1$, the slower the convergence (solved by preconditioning).

$$\begin{split} J_{\mathsf{SCF}} &= 1 + \Omega_*^{-1} K_* \\ \kappa(J_{\mathsf{SCF}}) \leqslant \frac{1 + \nu^{-1} \|K_*\|_{\mathsf{op}}}{\tilde{\eta}} \\ \text{with } \tilde{\eta} \text{ independent of } N_b \text{ (unif. coerc. assumption, often valid in practice)} \end{split}$$

the smaller the gap v, the slower the convergence (consistent with well-known issues).

Introduction	Optimality conditions	Algorithms analysis and comparison	Numerical tests	Conclusion and outlooks
			0000000	

1 Introduction

General framework

Mathematical framework

2 Some results on optimization on Grassmann manifolds

3 Algorithms analysis and comparison

- Projected gradient algorithm
- SCF algorithm
- Comparison

4 Numerical tests

- A toy model with tunable gap
- Local convergence for 1D Gross-Pitaevskii equation
- Convergence in KS-DFT

5 Conclusion and outlooks

Introduction 00000000	Optimality conditions	Algorithms analysis and comparison	Numerical tests	Conclusion and outlooks

A toy model with tunable gap

We consider the 2 \times 2 real matrices *P* such that $P^2 = P = P^*$ and Tr(P) = 1. Let

$$\mathsf{E}_{arepsilon}(\mathsf{P})\coloneqq \mathsf{Tr}\left(\left(\mathsf{P}-\left[egin{smallmatrix}1&arepsilon\arepsilon&0\end{smallmatrix}
ight)^2
ight)$$

Then, the gap $\nu(\varepsilon)$ behaves

$$u(\varepsilon) \sim_{\varepsilon \to 0} 4\varepsilon^2$$

 \rightsquigarrow when $\varepsilon \to 0,$ the gap goes to 0: suitable model to study the influence of the gap.

Introduction	Optimality conditions	Algorithms analysis and comparison	Numerical tests	Conclusion and outlooks
			0000000	

A toy model with tunable gap

 $1 + \Omega_*^{-1} \mathcal{K}_*$ has a single eigenvalue $1 + \frac{2}{\nu(\varepsilon)} \approx_{\varepsilon \to 0} 1 + \frac{1}{2\varepsilon^2}$ \Rightarrow convergence for $\beta < 4\varepsilon^2$ and for fixed β , $\varepsilon_{\text{crit}} = \sqrt{\beta/4}$.

Introduction 00000000	Optimality conditions 000	Algorithms analysis and comparison	Numerical tests	Conclusion and outlook

Local convergence for 1D Gross-Pitaevskii equation

We look at the periodic 1D GP equation on [0, 1]:

$$-\frac{1}{2}\Delta\phi_i + V\phi_i + \alpha\rho\phi_i = \varepsilon_i\phi_i, \quad \int_0^1 \phi_i\phi_j = \delta_{ij}, \quad \rho = \sum_{i=1}^N |\phi_i|^2,$$

with V the following smooth potential

and then we discretize it with finite differences.

Gaspard Kemlin CERMICS & Inria

Algorithms for electronic structure

Gaspard Kemlin CERMICS & Inria

Introduction 00000000	Optimality conditions	Algorithms analysis and comparison	Numerical tests	Conclusion and outlooks
DFTK				

Plane-wave basis Julia package for KS-DFT under a pseudo-potential approximation. It is developed by M. F. Herbst and A. Levitt at CERMICS.

More details on https://dftk.org.

Introduction Optimality conditions

ns Algorithms analysis and comparison

Numerical tests ○○○○○○●○ Conclusion and outlooks

KS-DFT for a Silicon crystal

- LDA approximation;
- GTH pseudopotentials;
- cutoff energy = 30 Ha;
- Γ-only Brillouin zone.

We vary the lattice constant *a* (which reduces the gap) and study the convergence for different steps.

Gaspard Kemlin CERMICS & Inria

Algorithms for electronic structure

Introduction 00000000	Optimality conditions	Algorithms analysis and comparison	Numerical tests	Conclusion and outlooks ●○
Conclu	sion			

- Both algorithms converge locally with different rates:
 - the SCF is sensitive to the gap;
 - the gradient is sensitive to the spectral radius of the Hamiltonian.
- In practice, which one should be preferred ? It depends on the convergence rate but also on the cost of each step.
 - quantum chemistry: computation of H(P) is limiting ~→ both algorithms are of roughly equal cost; we tend to prefer the SCF for Aufbau solutions and the gradient otherwise;
 - condensed-matter: P and H(P) are not store explicitly and the SCF is performed with block solvers \rightsquigarrow gradient methods should more efficient and more robust (the step can be chosen to minimize the energy). In practice, SCF is more used for its tricks that are known to work for metallic problems often met in condensed-matter.

This framework is useful to connect error and residual: in the linear regime

$$\underbrace{P-P_*}_{\text{error}} \approx (\Omega_* + K_*)^{-1} \underbrace{[P, [P, H(P)]]}_{\text{residual}}.$$

 \rightsquigarrow finding norms for which the operator norm above is not too big can be useful to derive good *a posteriori* estimators. We aim to implement this in DFTK at some point.

Ongoing works with Éric Cancès, Geneviève Dusson and Antoine Levitt.

Lemma

Let $f : \mathcal{M}_N \to \mathcal{M}_N$ and $P_* \in \mathcal{M}_N$ s.t. $f(P_*) = P_*$ and $r(df(P_*)) < 1$. Then, for P^0 close enough to P_* , the fixed point iteration $P^{k+1} = f(P^k)$ linearly converges to P_* with asymptotic rate $r(df(P_*))$, in the sense that for all $\theta > 0$ there exists $C_{\theta} > 0$ s.t. $\left\| P^k - P_* \right\| \leq C_{\theta} \left(r(df(P_*)) + \theta \right)^k \left\| P^0 - P_* \right\|$. **Details on d** $\mathcal{A}(P_*)$: $\mathcal{A} = A \circ H$ where, $A = \mathbf{1}_{(-\infty,\varepsilon_N]}$ and, by the strong *Aufbau* principle, there exists a contour \mathcal{C} in the complex plane enclosing the lowest N eigenvalues of H_* such that, for H close to H_* ,

$$A(H) = \frac{1}{2\pi i} \oint_{\mathcal{C}} \frac{1}{z - H} dz.$$

$$\forall h \in \mathcal{H}, \quad dA(H_*)h = \frac{1}{2\pi i} \oint_{\mathcal{C}} \frac{1}{z - H_*} h \frac{1}{z - H_*} dz$$

$$= \sum_{k=1}^{N_b} \sum_{l=1}^{N_b} \left(\frac{1}{2\pi i} \oint_{\mathcal{C}} \frac{1}{z - \varepsilon_k} h_{kl} \frac{1}{z - \varepsilon_l} dz \right) \phi_k \phi_l^*,$$

$$= \sum_{i=1}^N \sum_{a=N+1}^{N_b} \frac{1}{\varepsilon_i - \varepsilon_a} \left(h_{ia} \phi_i \phi_a^* + h_{ai} \phi_a \phi_i^* \right) = -\Omega_*^{-1} \Pi_{P_*} h_s$$

Finally,

$$\forall X \in \mathcal{T}_{P_*}\mathcal{M}_N, \quad \mathsf{d}\mathcal{A}(P_*)X = \mathsf{d}\mathcal{A}(H_*)\nabla^2 E(P_*)X = -\Omega_*^{-1}\Pi_{P_*}\nabla^2 E(P_*)\Pi_{P_*}X$$
$$\mathsf{d}\mathcal{A}(P_*)X = -\Omega_*^{-1}K_*X.$$

 $N = 2, \alpha = 50$

60 - 50 - 40 -		Gradi Gradi SC 0.6 0.8	ent F A
	Gradient	SCF	ODA
ε_1	52.9	51.3	53.6
ε_2	67.9	67.8	73.4
ε_3	78.5	79.6	73.4

The solution reached by the gradient occupies ϕ_1 and ϕ_3 , the one reached by ODA has fractional occupation numbers.

The SCF does not converge and we use ODA to explore the interior of the manifold.

N = 2, α varies

Before (left) and after (right) the bifurcation.